数字信号处理笔记05:离散系统变换域分析

2024-02-02 08:40

本文主要是介绍数字信号处理笔记05:离散系统变换域分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LTI系统的表征

1. LTI系统卷积

y[n] = x[n] \otimes h[n] = \sum_{k=-\infty}^{+\infty} x[n-k] h[k]

2. DTFT卷积定理

Y(e^{jw}) = X(e^{jw})H(e^{jw})

3. Z变换的卷积定理

Y(z) = X(z)H(z)

二、LTI系统的频域表示

1. LTI系统的特征函数

对于单位脉冲响应为h[n]的LTI系统,当输入复指数序列为x[n]=e^{jwn}时,可求出输出序列y[n]

y[n] = e^{jwn} \otimes y[n] = \sum_{k=-\infty}^{+\infty} e^{jw(n-k)}h[k] = e^{jwn} \sum_{k=-\infty}^{+\infty} h[k] e^{-jwk} = e^{jwn} H(e^{jw})

2. LTI系统的频率响应

当频率为w的单频复指数序列e^{jwn}输入LTI系统时,LTI系统不改变输入序列的频率,只会对输入序列的幅度和相位产生影响,因此H(e^{jw})描述了LTI系统对不同频率下复指数序列e^{jwn}幅度、相位的影响,将H(e^{jw})被称为频率响应。

3. 常用的离散时间理想滤波器

 三、LTI系统的z变换分析

1. 线性常系数差分方程表示的LTI系统

线性常系数差分方程:

y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]

Z变换:

Y(z) = \sum_{k=1}^{M} a_k Y(z) z^{-k} + \sum_{k=0}^{N} b_k X(z) z^{-k}

H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{ 1 - \sum_{k=1}^{N} a_{k} z^{-k} } \\ = \frac{b_0}{a_0} \frac{\prod_{m=1}^{M} (1-c_mz^{-1})}{\prod_{n=1}^{N} (1-d_nz^{-1})} \\ = z^{N-M} \frac{b_0}{a_0} \frac{\prod_{m=1}^{M} (z-c_m)}{\prod_{n=1}^{N}(z-d_n)}

2. 有理系统的z变换分析

LTI系统稳定的必要条件时系统函数H(z)的收敛域包含单位圆。

LTI系统的因果系统的充分必要条件为收敛域包含|z| = \infty

3. 有理系统的频率响应

 

 

四、有理系统的全通分解 

1. 幅频特性相同的系统

h[n] \leftrightarrow H(e^{jw}),h^{*}[-n] \leftrightarrow H^{*}(e^{jw})

h[n] \leftrightarrow H(z),h^{*}[-n] \leftrightarrow H^{*} \left( \frac{1}{z^{*}} \right )

若两个系统的零极点分布图中,有若干对零极点互为共轭倒数,则两者的幅频特性相同。

若有一个有理实系统,则可以将其中的若干个零点或极点,用它的共轭倒数代替,则新系统的幅频特性与原系统相同。

2. 全通系统

全通系统:|H_{ap}(e^{jw})| \equiv 1

H_{ap}(z) = \frac{z^{-1} - a^{*}}{1-az^{-1}},0<|a|<1

零点:\frac{1}{a^{*}},极点:a

3. 最小相位系统 

任何有理系统函数均可分解为最小相位系统H_{min}(z)和全通系统H_{ap}(z)级联的形式,称为有理系统的全通分解。

H(z) = H_{min}(z) H_{ap}(z)

 4. 系统补偿方法

五、广义线性相位系统

1. 广义线性相位系统的特点

引入广义线性相位,其频率响应H(e^{jw})可表示为

H(e^{jw}) = A(e^{jw}) e^{j\phi(w)}

\phi(w) = \beta - \alpha w称为广义线性相位,A(e^{jw})称为广义幅频响应。

H(e^{jw}) = A(e^{jw}) e^{j \phi(w)} = A(e^{jw}) sin(\phi(w)) + j A(e^{jw}) cos(\phi(w)) \\ = A(e^{jw}) sin(\beta - \alpha w) + j A(e^{jw}) cos(\beta - \alpha w) = \sum_{n=-\infty}^{+\infty} h[n] e^{-jwn} \\ = \sum_{n=-\infty}^{+\infty} h[n] cos(wn) - j \sum_{n = -\infty}^{+\infty} h[n] sin(wn)

由此可得:

\frac{sin(\beta - \alpha w)}{cos(\beta - \alpha w)} = \frac{-\sum_{n=-\infty}^{+\infty} h[n] sin(wn)}{\sum_{n=-\infty}^{+\infty} h[n] cos(wn)}

进一步可得:

\sum_{n=-\infty}^{+\infty} h[n] cos(wn) sin(\beta - \alpha w) + \sum_{n=-\infty}^{+\infty} h[n] sin(wn) cos(\beta - \alpha w) = 0

\sum_{n=-\infty}^{+\infty} h[n] sin(w(n-\alpha) + \beta) = 0

综上,广义线性相位系统的h[n]为实数,且满足\phi(w) = \beta - \alpha w\sum_{n=-\infty}^{+\infty} h[n] sin(w(n-\alpha) + \beta) = 0

2. 因果广义线性相位系统

因果广义线性相位系统h[n]0 \leq n \leq M

(1)第I类广义线性相位系统

M为偶数,h[M-n] = h[n]0 \leq n \leq MH(e^{jw}) = \sum_{n=-\infty}^{+\infty} h[n] e^{-jwn} \\ = \sum_{n=0}^{M/2 - 1} h[n] e^{-jwn} + h[M/2] e^{-jwM/2} + \sum_{n=M/2+1}^{M} h[n] e^{-jwn} \\ = \sum_{n=0}^{M/2 - 1} h[n] e^{-jwn} + h[M/2] e^{-jwM/2} + \sum_{n=0}^{M/2-1} h[n] e^{-jw(M-n)} \\ = \sum_{n=0}^{M/2 - 1} h[n] \left( e^{-jwn} + e^{-jw(M-n)} \right ) + h[M/2] e^{-jwM/2} \\ = \sum_{n=0}^{M/2 - 1} h[n] \left( e^{-jw(n-M/2)} + e^{jw(n-M/2)} \right ) e^{-jwM/2}+ h[M/2] e^{-jwM/2} \\ = e^{-jwM/2} \left[ \sum_{n=0}^{M/2 - 1} h[n] \left( e^{-jw(n-M/2)} + e^{jw(n-M/2)} \right )+ h[M/2] \right ] \\ = e^{-jwM/2} \left[ \sum_{n=0}^{M/2 - 1} 2 h[n] cos[w(n-M/2)] + h[M/2] \right ]

\phi(w) = -\frac{M}{2} w

A(e^{jw}) = \sum_{n=0}^{M/2 - 1} 2 h[n] cos[w(n-M/2)] + h[M/2]

H(e^{jw})关于w=0,\pi偶对称

(2)第II类广义线性相位系统

M为奇数,h[M-n] = h[n]0 \leq n \leq M

H(e^{jw}) = e^{-jwM/2} \sum_{n=0}^{\frac{M-1}{2}}2h[n] cos(w(n-M/2))

\phi(w) = -\frac{M}{2} w

A(e^{jw}) = \sum_{n=0}^{\frac{M-1}{2}} 2h[n] cos(w(n-M/2))

H(e^{jw})关于w=0偶对称,关于w=pi奇对称,且在w=pi处为0。

(3)第III类广义线性相位系统

 M为偶数,h[M-n] + h[n] = 00 \leq n \leq M

H(e^{jw}) = e^{j(\frac{\pi}{2} - w\frac{M}{2})} \left( \sum_{n=0}^{\frac{M}{2} - 1} 2h[n] sin\left( w(M/2 - n) \right ) \right )

\phi(w) = \frac{\pi}{2} - \frac{M}{2}w

A(e^{jw}) = \sum_{n=0}^{\frac{M}{2} - 1} 2h[n] sin\left( w(M/2 - n) \right )

H(e^{jw})关于w=0和w=pi奇对称,且为0.

(4)第IV类广义线性相位系统

 M为奇数,h[M-n] + h[n] = 00 \leq n \leq M

\phi(w) = \frac{\pi}{2} - \frac{M}{2}w

A(e^{jw}) = \sum_{n=0}^{\frac{M}{2} - 1} 2h[n] sin\left( w(M/2 - n) \right )

H(e^{jw})关于w=0奇对称,关于w=pi偶对称,在w=0处为0.

这篇关于数字信号处理笔记05:离散系统变换域分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670129

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按