聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

2024-02-02 06:20

本文主要是介绍聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity = 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二:

  • 每隔index_granularity行对主键组的数据进行采样,形成稀疏索引,并存储在primary.idx文件中;

  • 每隔index_granularity行对每一列的压缩数据([column].bin)进行采样,形成数据标记,并存储在[column].mrk文件中。

index_granularity、primary.idx、[column].bin/mrk之间的关系可以用ClickHouse之父Alexey Milovidov展示过的一幅简图来表示。

image.png

但是早在ClickHouse 19.11.8版本,社区就引入了自适应(adaptive)索引粒度的特性,并且在之后的版本中都是默认开启的。也就是说,主键索引和数据标记生成的间隔可以不再固定,更加灵活。下面通过简单实例来讲解固定索引粒度和自适应索引粒度之间的不同之处。

固定索引粒度

利用Yandex.Metrica提供的hits_v1测试数据集,创建如下的表。

CREATE TABLE datasets.hits_v1_fixed
(`WatchID` UInt64,`JavaEnable` UInt8,`Title` String,-- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, index_granularity_bytes = 0;  -- Disable adaptive index granularity

注意使用SETTINGS index_granularity_bytes = 0取消自适应索引粒度。将测试数据导入之后,执行OPTIMIZE TABLE语句触发merge,以方便观察索引和标记数据。

来到merge完成后的数据part目录中——笔者这里是201403_1_32_3,并利用od(octal dump)命令观察primary.idx中的内容。注意索引列一共有3列,Counter和intHash32(UserID)都是32位整形,EventDate是16位整形(Date类型存储的是距离1970-01-01的天数)。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx 1635  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx 16149        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx 1562260480  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx 3266  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx 490736209  # intHash32(UserID)[2]

能够看出ORDER BY的第一关键字Counter确实是递增的,但是不足以体现出index_granularity的影响。因此再观察一下标记文件的内容,以8位整形的Age列为例,比较简单。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 320 Age.mrk0                    00                 81920                163840                245760                327680                409600                491520                5734419423                    019423                 819219423                1638419423                2457619423                3276819423                4096019423                4915219423                5734445658                    045658                 819245658                1638445658                24576

上面打印出了两列数据,表示被选为标记的行的两个属性:第一个属性为该行所处的压缩数据块在对应bin文件中的起始偏移量,第二个属性为该行在数据块解压后,在块内部所处的偏移量,单位均为字节。由于一条Age数据在解压的情况下正好占用1字节,所以能够证明数据标记是按照固定index_granularity的规则生成的。

自适应索引粒度

创建同样结构的表,写入相同的测试数据,但是将index_granularity_bytes设为1MB(为了方便看出差异而已,默认值是10MB),以启用自适应索引粒度。

CREATE TABLE datasets.hits_v1_adaptive
(`WatchID` UInt64,`JavaEnable` UInt8,`Title` String,-- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, index_granularity_bytes = 1048576;  -- Enable adaptive index granularity

index_granularity_bytes表示每隔表中数据的大小来生成索引和标记,且与index_granularity共同作用,只要满足两个条件之一即生成。

触发merge之后,观察primary.idx的数据。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx61  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx16151        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx1579769176  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx63  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx2037061113  # intHash32(UserID)[2]

通过Counter列的数据可见,主键索引明显地变密集了,说明index_granularity_bytes的设定生效了。接下来仍然以Age列为例观察标记文件,注意文件扩展名变成了mrk2,说明启用了自适应索引粒度。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 2048 --width=24 Age.mrk20                    0                 11200                 1120                 11200                 2240                 11200                 3360                 11200                 4480                 11200                 5600                 11200                 6720                 11200                 7840                  3520                 8192                 11110                 9303                 11110                10414                 11110                11525                 11110                12636                 11110                13747                 11110                14858                 11110                15969                  4150                16384                 1096
# 略去一些17694                    0                 110217694                 1102                 110217694                 2204                 110217694                 3306                 110217694                 4408                 110217694                 5510                 110217694                 6612                  95617694                 7568                 1104
# ......

mrk2文件被格式化成了3列,前两列的含义与mrk文件相同,而第三列的含义则是两个标记之间相隔的行数。可以观察到,每隔1100行左右就会生成一个标记(同时也说明该表内1MB的数据大约包含1100行)。同时,在偏移量计数达到8192、16384等8192的倍数时(即经过了index_granularity的倍数行),同样也会生成标记,证明两个参数是协同生效的。

最后一个问题:ClickHouse为什么要设计自适应索引粒度呢?

当一行的数据量比较大时(比如达到了1kB甚至数kB),单纯按照固定索引粒度会造成每个“颗粒”(granule)的数据量膨胀,拖累读写性能。有了自适应索引粒度之后,每个granule的数据量可以被控制在合理的范围内,官方给定的默认值10MB在大多数情况下都不需要更改。

作者:京东物流 康琪

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

这篇关于聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669724

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

MybatisPlus3.3.1整合clickhouse的过程

《MybatisPlus3.3.1整合clickhouse的过程》:本文主要介绍MybatisPlus3.3.1整合clickhouse的过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定... 前言ClickHouse是俄罗斯Yandex发布的一款数据分析型数据库支持sql语法,详情可以访问官网,

MySQL索引失效问题及解决方案

《MySQL索引失效问题及解决方案》:本文主要介绍MySQL索引失效问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql索引失效一、概要二、常见的导致MpythonySQL索引失效的原因三、如何诊断MySQL索引失效四、如何解决MySQL索引失

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分