spark取得lzo压缩文件报错 java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec

本文主要是介绍spark取得lzo压缩文件报错 java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

恩,这个问题,反正是我从来没有注意的问题,但今天还是写出来吧

配置信息

hadoop core-site.xml配置

<property><name>io.compression.codecs</name><value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec,org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.LzmaCodec</value></property><property><name>io.compression.codec.lzo.class</name><value>com.hadoop.compression.lzo.LzoCodec</value></property>

io compression codec 是lzo

spark-env.sh配置

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native
export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/cluster/apps/hadoop/share/hadoop/yarn/:/home/cluster/apps/hadoop/share/hadoop/yarn/lib/:/home/cluster/apps/hadoop/share/hadoop/common/:/home/cluster/apps/hadoop/share/hadoop/common/lib/:/home/cluster/apps/hadoop/share/hadoop/hdfs/:/home/cluster/apps/hadoop/share/hadoop/hdfs/lib/:/home/cluster/apps/hadoop/share/hadoop/mapreduce/:/home/cluster/apps/hadoop/share/hadoop/mapreduce/lib/:/home/cluster/apps/hadoop/share/hadoop/tools/lib/:/home/cluster/apps/spark/spark-1.4.1/lib/

操作信息

启动 spark-shell
执行如下代码

 val lzoFile  = sc.textFile("/tmp/data/lzo/part-m-00000.lzo")lzoFile.count

具体报错信息

java.lang.RuntimeException: Error in configuring object at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133) at org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:190) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:203) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1781) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:885) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) at org.apache.spark.rdd.RDD.withScope(RDD.scala:286) at org.apache.spark.rdd.RDD.collect(RDD.scala:884) at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:105) at org.apache.spark.sql.hive.HiveContext$QueryExecution.stringResult(HiveContext.scala:503) at org.apache.spark.sql.hive.thriftserver.AbstractSparkSQLDriver.run(AbstractSparkSQLDriver.scala:58) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:283) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:423) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:218) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 
Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106) ... 45 more 
Caused by: java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.LzoCodec not found. at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:135) at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:175) at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45) ... 50 more 
Caused by: java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec not found at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1803) at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:128) ... 52 more 

然后如何解决呢

后来有点怀疑 hadoop core-site.xml配置格式问题,然后让同事帮我跟进hadoop 源码,可以肯定不是hadoop问题
然后 我就想了想,之前也遇到类似的问题,我是这样配置spark-env.sh

export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:/home/stark_summer/opt/hadoop/hadoop-2.3.0-cdh5.1.0/lib/native/Linux-amd64-64/*:/home/stark_summer/opt/hadoop/hadoop-2.3.0-cdh5.1.0/share/hadoop/common/hadoop-lzo-0.4.15-cdh5.1.0.jar:/home/stark_summer/opt/spark/spark-1.3.1-bin-hadoop2.3/lib/*
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/stark_summer/opt/hadoop/hadoop-2.3.0-cdh5.1.0/share/hadoop/common/hadoop-lzo-0.4.15-cdh5.1.0.jar:/home/stark_summer/opt/spark/spark-1.3.1-bin-hadoop2.3/lib/*

这个配置是之前fix这个问题的,但是 是很久之前的事情,我早已经忘了,所以这是平日写博客的好处,把每次遇到的问题全部记录下来
恩?如果我指定具体.jar包,那就没问题了,但是在spark中 难道必须要用 * 来指定某个目录下的所有jar么?那这个跟hadoop还真不一样呢,在hadoop中 我们要指定某个目录下的jar包,都是/xxx/yyy/lib/
而spark必须要求/xxx/yyy/lib/*,才能加载到这个目录下的jar包,否则就会包如上错误

修改后的spark-env.sh配置文件

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native
export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/cluster/apps/hadoop/share/hadoop/yarn/*:/home/cluster/apps/hadoop/share/hadoop/yarn/lib/*:/home/cluster/apps/hadoop/share/hadoop/common/*:/home/cluster/apps/hadoop/share/hadoop/common/lib/*:/home/cluster/apps/hadoop/share/hadoop/hdfs/*:/home/cluster/apps/hadoop/share/hadoop/hdfs/lib/*:/home/cluster/apps/hadoop/share/hadoop/mapreduce/*:/home/cluster/apps/hadoop/share/hadoop/mapreduce/lib/*:/home/cluster/apps/hadoop/share/hadoop/tools/lib/*:/home/cluster/apps/spark/spark-1.4.1/lib/*

当再次执行上述代码就没有问题了

但是 但是 但是

如果 我把 /home/cluster/apps/hadoop/lib/native 改成/home/cluster/apps/hadoop/lib/native/*

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native/*
export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:/home/cluster/apps/hadoop/lib/native/*
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/cluster/apps/hadoop/share/hadoop/yarn/*:/home/cluster/apps/hadoop/share/hadoop/yarn/lib/*:/home/cluster/apps/hadoop/share/hadoop/common/*:/home/cluster/apps/hadoop/share/hadoop/common/lib/*:/home/cluster/apps/hadoop/share/hadoop/hdfs/*:/home/cluster/apps/hadoop/share/hadoop/hdfs/lib/*:/home/cluster/apps/hadoop/share/hadoop/mapreduce/*:/home/cluster/apps/hadoop/share/hadoop/mapreduce/lib/*:/home/cluster/apps/hadoop/share/hadoop/tools/lib/*:/home/cluster/apps/spark/spark-1.4.1/lib/*

尼玛 就会报错如下:

spark.repl.class.uri=http://10.32.24.78:52753) error [Ljava.lang.StackTraceElement;@4efb0b1f2015-09-11 17:52:02,357 ERROR [main] spark.SparkContext (Logging.scala:logError(96)) - Error initializing SparkContext.
java.lang.reflect.InvocationTargetExceptionat sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)at java.lang.reflect.Constructor.newInstance(Constructor.java:526)at org.apache.spark.io.CompressionCodec$.createCodec(CompressionCodec.scala:68)at org.apache.spark.io.CompressionCodec$.createCodec(CompressionCodec.scala:60)at org.apache.spark.scheduler.EventLoggingListener.<init>(EventLoggingListener.scala:69)at org.apache.spark.SparkContext.<init>(SparkContext.scala:513)at org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:1017)at $line3.$read$$iwC$$iwC.<init>(<console>:9)at $line3.$read$$iwC.<init>(<console>:18)at $line3.$read.<init>(<console>:20)at $line3.$read$.<init>(<console>:24)at $line3.$read$.<clinit>(<console>)at $line3.$eval$.<init>(<console>:7)at $line3.$eval$.<clinit>(<console>)at $line3.$eval.$print(<console>)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:606)at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338)at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:123)at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:122)at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:122)at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64)at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:974)at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:157)at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64)at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:106)at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:991)at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)at org.apache.spark.repl.Main$.main(Main.scala:31)at org.apache.spark.repl.Main.main(Main.scala)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:606)at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665)at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170)at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193)at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.IllegalArgumentExceptionat org.apache.spark.io.SnappyCompressionCodec.<init>(CompressionCodec.scala:155)... 56 more

此刻我想说

您们城里人就是会玩,我已经被打败了~

尊重原创,拒绝转载,http://blog.csdn.net/stark_summer/article/details/48375999

这篇关于spark取得lzo压缩文件报错 java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667224

相关文章

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使