Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)

2024-02-01 07:28

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇文章中,我们成功验证了Intel Threading Building Blocks (TBB) 与 OpenMP 在多线程并行处理方面的加速潜力。为了更深入地理解这些技术在实际应用场景中的效能提升,接下来我们将目光转向目标开发板环境,进一步探究这两种框架在嵌入式系统上的实际加速效果。
一、OPENMP加速效果测试
在探讨OPENMP对性能提升的影响时,我们首先遇到了一个有趣的插曲。通常情况下,OpenMP作为一项编译器层面的支持特性,只需在编译阶段通过简单的命令行标志即可启用,例如在使用make构建时追加-fopenmp参数,或在CMake项目中配置如set(CMAKE_CXX_FLAGS “-fopenmp”),即可轻松为项目开启并行处理能力。

然而,在针对RV1106平台的交叉编译环境中,我们发现原生的交叉编译工具链并不支持OpenMP功能。通过执行arm-rockchip830-linux-uclibcgnueabihf-gcc -v来查看编译器详细信息时,注意到其构建选项中包含了–disable-libgomp,这意味着该编译器在构建之初就已排除了对OpenMP库的支持。这可能是因为RV1106芯片本身为单核架构,考虑到硬件资源有限,制造商在设计工具链时并未考虑多线程并行处理的需求。
RV1106交叉编译器能力
尽管如此,面对手头仅有的嵌入式开发环境限制,我们并未止步于此。经过深入研究和探索,最终成功实现了对该交叉编译器OpenMP支持的集成。虽然整个过程尚未完全优化与标准化,此处暂且略过具体实现细节,我们将简要概述如何使编译器支持OpenMP以及随后进行的测试效果评估。

交叉编译器不支持的临时解决办法:
1、从源码编译openmp:
官网介绍:https://www.openmp.org/specifications/
下载地址:https://github.com/OpenMP/sources
编译过程比较简单:在源码中将makefile的configure 后面指定当前的编译工具链路径和生产路径。

all: mkdir src/libgomp/build ;          \cd src/libgomp/build &&            \../configure --host=arm-rockchip830-linux-uclibcgnueabihf && \$(MAKE)

2、编译好的libgomp放入工具链
我生成的libgomp 路径在 libgomp-master\src\libgomp\build.libs 下面,将其中的
libgomp.so libgomp.so.1 libgomp.so.1.0.0 以及上一级目录的libgomp.spec 一共四个文件拷贝到工具链的以下两个路径:

/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/lib/lib
/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/sysroot/lib/

编译测试:
在编译过程中,直接加入-fopenmp指令:

arm-rockchip830-linux-uclibcgnueabihf-g++ OptCvTestWin.cpp -o test -fopenmp

即可生成可执行文件。
此处不用cmake编译,因为写好的cmakelist中配置的-fopenmp不生效。

加速效果:

# ./test cv F1 Time = 79  rslt 3.20518e+10cv F2 Time = 153  rslt 3.20518e+10cv F1 Time = 91  rslt 2.99779e+10cv F2 Time = 166  rslt 2.99779e+10cv F1 Time = 76  rslt 2.93042e+10cv F2 Time = 166  rslt 2.93042e+10cv F1 Time = 75  rslt 3.1813e+10cv F2 Time = 158  rslt 3.1813e+10cv F1 Time = 75  rslt 3.18925e+10cv F2 Time = 177  rslt 3.18925e+10cv F1 Time = 81  rslt 3.07783e+10cv F2 Time = 158  rslt 3.07783e+10cv F1 Time = 90  rslt 3.05833e+10cv F2 Time = 156  rslt 3.05833e+10cv F1 Time = 76  rslt 2.83669e+10cv F2 Time = 158  rslt 2.83669e+10cv F1 Time = 91  rslt 3.42625e+10cv F2 Time = 170  rslt 3.42625e+10cv F1 Time = 75  rslt 3.44049e+10cv F2 Time = 163  rslt 3.44049e+10

对比了多线程方案F1与常规单线程方案F2的执行速度(单位ms)。实验发现,随着OpenMP线程数从2增至10,F1的加速效果逐步提升;但超过10个线程后,加速收益不再明显增加。这表明存在一个最优线程数阈值,在该范围内使用OpenMP能有效提高程序性能。

测试的代码放出来:
整体上跑10遍观察效果,选取其中一部分数据打印看结果是否一致。

#include <fstream>
#include <iostream>
#include <vector>
//#include <opencv2/opencv.hpp>
//#include "libgomp.h"
#include <future>
#include <thread>
//#include <tbb/parallel_for.h>
//#include <tbb/blocked_range.h>
#include <chrono>
//using namespace cv;
using namespace std;typedef std::chrono::system_clock::time_point SYS_TIME;
SYS_TIME getClock()
{return std::chrono::system_clock::now();
}
double getMsTime(SYS_TIME start, SYS_TIME end)
{return  std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count();
}
int main()
{for (int j =0; j <10; j++)
{const int iCnt = 1000000;std::vector<float> data1(iCnt);std::vector<float> data2(iCnt);for (float i = 0; i < iCnt; ++i) {data1[i] = rand(); // 假设填充了随机整数data2[i] = data1[i];}float fv1=0;SYS_TIME start = getClock();
#pragma omp parallel num_threads(4){
#pragma omp forfor(int i = 0; i < iCnt; i++){data1[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv1+=data1[i];}}cout << " cv F1 Time = " << getMsTime(start, getClock()) <<"  rslt "<< fv1  << endl;float fv2=0;SYS_TIME start2 = getClock();{for (float i = 0; i < iCnt; i++){data2[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv2+=data2[i];}}cout << " cv F2 Time = " << getMsTime(start2, getClock()) <<"  rslt "<< fv2  << endl;
}    return 0;
}

后记:
在本阶段的技术探索中,我们遇到了CMakeLists.txt中设置的OpenMP编译选项未能生效的问题。尽管GPT暂时无法给出具体原因,但当前的重点已转向验证OpenMP的实际加速效果,并发现尽管其在基准测试中表现出显著优势,但在实际业务工程应用时却遭遇了挑战。由于现有工程完全依赖于由CMake构建的Makefile体系,直接修改Makefile以整合OpenMP支持无疑会增加额外的工作量。
在这里插入图片描述
1、一种解决方案是联系RK(瑞芯微)厂家,请求提供一个内建OpenMP支持的交叉编译器版本,或者自行构建这样一个工具链。然而,鉴于目前的知识储备尚不足以完成这一任务,该方案暂时尚未实施
2、另个一个可行的方案是,将预先编译好的libgomp库作为静态或动态链接库与可执行文件进行链接。这种方法虽然理论上可行,但在调用OpenMP接口和管理库依赖方面可能会遇到复杂性问题,需要进一步技术评估。

接下来的步骤,我们将把注意力转向Intel Threading Building Blocks (TBB) 并行编程库,计划对其进行编译和测试验证,以对比分析其对项目性能提升的效果。

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666518

相关文章

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用