应用keras建立ANN模型.

2024-02-01 04:44
文章标签 应用 模型 建立 keras ann

本文主要是介绍应用keras建立ANN模型.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍: 

Keras是一个开源的神经网络库,它基于Python语言,并能够在多个深度学习框架上运行,包括TensorFlow、Theano和CNTK。Keras提供了一种简洁而高层次的API,使得用户能够快速构建、训练和部署神经网络模型。

Keras的设计理念是以用户友好和易用性为重点。它提供了一系列高层次的构建模块,可以快速创建各种类型的神经网络模型,如全连接神经网络、卷积神经网络和循环神经网络等。Keras还提供了丰富的预训练模型和工具,方便用户进行模型的迁移学习和迁移部署。

Keras的优点包括简单易用、高度模块化、可扩展性强、跨平台和与TensorFlow等深度学习框架无缝集成等。由于其灵活性和高效性,Keras已经成为了开发人员和研究人员最喜欢的深度学习框架之一。

建模: 

from numpy import loadtxt
import numpy as np
from keras.models import Sequential
from keras.layers import Dense# load the dataset
dataset = loadtxt('Lesson47-pima-indians-diabetes.data', delimiter=',')# split into input (X) and output (y) variables
X = dataset[:,0:8]
y = dataset[:,8]# define the keras model
model = Sequential()#串型神经网络
model.add(Dense(12, input_dim=8, activation='relu'))#第一层hidden layer1,12个节点输出,8个点输入
model.add(Dense(8, activation='relu'))#第二层hidden layer2,8个节点输出
model.add(Dense(1, activation='sigmoid'))#输出 sigmoid把数据弄为0~1之间,最后大于0.5的为1# compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# fit the keras model on the dataset
model.fit(X, y, epochs=500)# evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))

 

预测:

# make class predictions with the model
y_train_predict = model.predict(X)
a = np.ones(len(X))
b = a/2
c = np.insert(y_train_predict,0,b,axis=1)
predictions = np.argmax(c,axis=1)
predictions = predictions.reshape(len(X),1)
#print(y_train_predict)
# summarize the first 5 cases
for i in range(len(X)):print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i]))

这篇关于应用keras建立ANN模型.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666116

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参