测试工作总结之--系统可靠性分析(2)

2024-02-01 02:18

本文主要是介绍测试工作总结之--系统可靠性分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2. 系统可靠性分析

平均每千行代码bug数

后台代码总共342480行(由于前台代码较难统计,据开发人员估计是后台代码的3倍),系统总代码数是1369920,属于一个大规模系统,平均每千行代码约为2个bug。

平均无故障时间MTTF

若设T是软件总的运行时间,M是软件在这段时间内的故障次数。

内部平均无故障时间MTTF=T/M=365*24/2041=4.29小时;

外部平均无故障时间MTTF= T/M =(365-151)*24/16=321小时=13.375天。根据考察资料得知,航天科技一些精密系统平均无故障时间720小时对应90分的可信度,参考这个,相当于我们系统的可信度大约为40分。

下面用Shooman模型对平均无故障时间MTTF进行分析:

对一个长度为342480行代码的系统进行测试,根据记录下来的数据如下:

①测试开始,发现错误个数为0(假设为0,2012年测试出bug不计入统计);

②经过了151天的测试,累计改正1137个错误,此时,MTTF=3.19小时;

③又经过214天的测试,累计改正2041个错误,此时,MTTF=4.29小时;

由Shooman公式: MTTF=1/K(ET/LT-ET(t)/LT

其中,K 是一个经验常数,美国一些统计数字表明,K的典型值是200;ET 是测试之前程序中原有的故障总数;LT 是程序长度(机器指令条数或简单汇编语句条数);t是测试(包括排错)的时间;EC (t) 是在0~t期间内检出并排除的故障总数。

公式的基本假定是:

单位(程序)长度中的故障数ET∕LT近似为常数,它不因测试与排错而改变。 统计数字表明,通常ET∕LT 值的变化范围在0.5×10-2~2×10-2之间;故障检出率正比于程序中残留故障数,而MTTF与程序中残留故障数成正比;故障不可能完全检出,但一经检出立即得到改正。

由已知条件②、③可解出K=31.22 ,ET = 4598 。系统中仍可能残留4598-2041=2557个问题。

评估系统稳定性还有哪些方法、模型、参数呢?希望经验人士多给意见。

【参考文献】

《软件评测师教程》

这篇关于测试工作总结之--系统可靠性分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665771

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#利用Free Spire.XLS for .NET复制Excel工作表

《C#利用FreeSpire.XLSfor.NET复制Excel工作表》在日常的.NET开发中,我们经常需要操作Excel文件,本文将详细介绍C#如何使用FreeSpire.XLSfor.NET... 目录1. 环境准备2. 核心功能3. android示例代码3.1 在同一工作簿内复制工作表3.2 在不同

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文