HI3516DV300/HI3519AV100/HI3559AV100 实现RTSP/RTMP视频流实时识别YOLOV3 识别速度14帧/S

本文主要是介绍HI3516DV300/HI3519AV100/HI3559AV100 实现RTSP/RTMP视频流实时识别YOLOV3 识别速度14帧/S,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本教程是基于yolov3在硬件实现硬件的实时视频处理!
不是SAMPLE中的处理单张图片照片!
未采用opencv库,数据处理全部采用硬件加速!
直接对摄像头数据直接进行图像识别!
HI3516 识别速度 10帧/S
HI3519 识别速度 14帧/S

教程目的: 在硬件实现视频流实时识别,将深度学习落地于实战项目中。

实现原理:

  1. VPSS 使用3路,部分芯片VPSS CH0 不支持缩小,为保证输出帧率,保留第一路不使用。
  2. VPSS CH1 当作 yolov3 的检测输入识别结果经过OVERLAY叠加到VENC中
  3. VPSS CH2 实现720P视频输出,经过RTSP/RTMP/VO 实时查看。
    在这里插入图片描述
    一 YOLOV3 训练
    二 YOLOV3 格式转换
    a. 因为NNIE只支持CAFFE格式的转换,所以先将weights 文件转换为caffe文件
    darknet2caffe cfg/yolov3.cfg weights/yolov3.weights prototxt/yolov3.prototxt caffemodel/yolov3.caffemodel
    b 将转换好的caffe文件生成 NNIE识别的WK文件
    先修改 yolov3-voc.prototxt 文件,确保转换成功
    input: “data”
    input_shape {
    dim: 1
    dim: 3
    dim: 416
    dim: 416
    }
  4. 修改转换 inst_yolov3.cfg
# yolov3-coco 80种分类
[prototxt_file] ./data/detection/yolov3-nnie/model/yolov3.prototxt
[caffemodel_file]  ./data/detection/yolov3-nnie/model/yolov3.caffemodel
[instruction_name] ./data/detection/yolov3-nnie/inst_yolov3
[batch_num] 1
[net_type] 0
[sparse_rate] 0
# compile_mode 0 - 高速模式损失精度 1 - 高精度模式
[compile_mode] 0
[is_simulation] 0
[log_level] 2
[RGB_order] BGR
[data_scale] 0.0039062
[internal_stride] 16
[image_list] nnie_mapper/image_ref_list.txt
# 1 -   SVP_BLOB_TYPE_U8  3 SVP_BLOB_TYPE_YUV420SP
[image_type] 1                           
# [image_type] 3
[mean_file] null
[norm_type] 3

./nnie_mapper/bin/nnie_mapper_12 ./nnie_mapper/yolov3_inst.cfg
三、系统划分

核心代码:

1. 获取通道图像信息s32Ret = HI_MPI_VPSS_GetChnFrame(s32VpssGrp, as32VpssChn[1], &stExtFrmInfo, s32MilliSec);
2. 通过Yolov3输出识别s32Ret = SAMPLE_SVP_NNIE_Yolov3_Proc(pstParam,pstSwParam, &stExtFrmInfo,1280,720);
3. 将输出结果叠加到视频流中REGION_VENC_NNIE_DrawRect(0,&(pstSwParam->stRect),0xffff); // 绘制识别结果

三、测试结果

每秒14帧速率

具体实现过程以及最终源码

这篇关于HI3516DV300/HI3519AV100/HI3559AV100 实现RTSP/RTMP视频流实时识别YOLOV3 识别速度14帧/S的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665730

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S