R语言——单因素方差分析笔记

2024-02-01 01:40

本文主要是介绍R语言——单因素方差分析笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这学期有一门选修应用统计软件。课上理论讲得不清不楚,编程根本练不着,老师布置的作业就是将他发的代码运行一下写个报告,简直就是机械化的浪费时间的操作。为了不白学这门课,在此稍加整理课上的笔记,供自己以后回顾复习。

一、aov函数

(一)样本服从正态分布

1.代码示例

n1=150;  ##n1=50
n2=150;  ##n2=50
n3=150;  ##n3=50
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
mouse<-data.frame(
X=c(x1,x2,x3),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3))))
mouse.aov<-aov(X~A,data=mouse)
source("anova.tab.R"); anova.tab(mouse.aov)

2.部分代码解释

(1)aov()函数提供方差分析表计算,使用方法:aov(formula,data=NULL,projections=FALSE,qr=TRUE,contrasts=NULL,...),结合在线帮助理解。

(2)factor:转换为因子类型,因子在整个计算过程中不作为数值,而是一个”符号”。

3.结果分析

 

 图①是样本量取50的运行结果,P值较大,接受原假设,即三类样本无显著差异;图②是样本量取150的运行结果,P值较小,拒绝原假设,即三类样本存在显著差异。可见样本量越大,检验结果越准确。

(二)样本误差服从T分布(T分布尾部比正态分布重)

1.代码示例
n1=150;
n2=150;
n3=150;
u1=0.5;
u2=0;
u3=0;
df=3  ##自由度为3
x1=u1+rt(n1,df);  ##误差生成t分布随机数
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
mouse<-data.frame(
X=c(x1,x2,x3),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3))))
mouse.aov<-aov(X~A, data=mouse)
source("anova.tab.R"); anova.tab(mouse.aov)

2.结果分析

 在样本量较大的情况下,所得P值较小,可拒绝原假设。故当样本量较大,误差的分布对于检验的影响较小,而样本均值的差异对于检验影响较大。

二、KW检验

KW检验的优点:对于误差分布无限制,对误差分布无正态性假设。

(一)样本服从正态分布

1.代码示例

n1=50;
n2=50;
n3=50;
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
food<-data.frame(
x=c(x1,x2,x3),
g=factor(rep(1:3, c(n1,n2,n3))))
kruskal.test(x~g, data=food)

2.结果分析

样本量为50时,就能得到在显著性水平取0.05时拒绝原假设的结果。可见KW检验可能比aov函数具有更好的检验效果。

(二)样本误差服从T分布

1.代码示例

n1=200;
n2=200;
n3=200;
u1=0.5;
u2=0;
u3=0;
df=3
x1=u1+rt(n1,df);
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
food<-data.frame(
x=c(x1,x2,x3),
g=factor(rep(1:3, c(n1,n2,n3))))
kruskal.test(x~g, data=food)

2.代码解释

kruskal.test(formula,data,subset,na.action,...)是K-W秩和检验的函数

3.结果分析

 

P值很小,故拒绝原假设,即三组样本均值存在显著差异。

三、pairwise检验

(一)样本服从正态分布

1.代码示例

n1=100;
n2=100;
n3=100;
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
X=c(x1,x2,x3)
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3)))
mu<-c(mean(X[A==1]), mean(X[A==2]), mean(X[A==3])); mu
pairwise.t.test(X, A, p.adjust.method = "none")
pairwise.t.test(X, A, p.adjust.method = "holm")
pairwise.t.test(X, A, p.adjust.method = "bonferroni")

2.代码解释

pairwise.t.test()函数用于均值的多重比较,其使用方法如下:pairwise.t.test(x,g,p.adjust.method=p.adjust.methods,pool.sd=TRUE,...)

其中x是响应向量,g是因子向量,p.adjust.method是P值的调整方法。其中,调整方法由p.adjust()给出,详见p.adjust()函数的在线帮助。若p.adjust.method = "none",表示不做任何调整;缺省值按“holm”作调整。

3.结果分析

首先由均值的估计可见,μ1与μ2、μ3存在较大差异。利用三种pairwise的检验方法,均得到μ1与μ2、μ3的检验P值低于显著性水平0.05,故μ1与μ2、μ3存在显著差异;而μ2与μ3之间检验P值较大,故接受原假设,即μ2与μ3之间无显著差异。

(二)样本误差服从自由度为3的T分布

1.代码示例

n1=200;
n2=200;
n3=200;
u1=0.5;
u2=0;
u3=0;
df=3
x1=u1+rt(n1,df);
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
X=c(x1,x2,x3)
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3)))
mu<-c(mean(X[A==1]), mean(X[A==2]), mean(X[A==3])); mu
pairwise.t.test(X, A, p.adjust.method = "none")
pairwise.t.test(X, A, p.adjust.method = "holm")
pairwise.t.test(X, A, p.adjust.method = "bonferroni")

2.结果分析

 分析结果同上。

PS:有时运行结果会出现错误,得到不准确的检验结果。多运行几次,能够避免取错误的检验结果。

四、Bartlett检验

1.代码示例

n1=50;
n2=50;
n3=50;
n4=50;
lamp<-data.frame(
X=c(rnorm(n1,0,1),rnorm(n2,0,2),rnorm(n3,0,2),rnorm(n4,0,2)),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3), rep(4,n4))))
bartlett.test(X~A, data=lamp)
bartlett.test(lamp$X, lamp$A)  ##bartlett.test函数的另一种使用方法 

2.代码解释

bartlett.test()函数用于方差齐性检验,其使用格式为bartlett.test(x,g,..),其中x是由数据构成的向量或列表,g是由因子构成的向量,x是列表时,此项无效;或使用另一种格式bartlett.test(formula,data,subset,na.action,...),可借助在线帮助理解各参数含义。

3.结果分析

 所得P值很小,故拒绝原假设,即样本间的方差存在显著差异。符合样本的设定。

五、friedman检验

friedman检验用于多个样本的比较,如果它们的总体不能满足正态性和方差齐性的要求。firedman检验原假设为:各方法处理效果无显著差异。

1.代码示例

##各变量之间有相关性##
n=1000
p=3;
alpha=0.5;
sig=1;
##均值
mu=c(0.5,rep(0,p-1));
##协方差矩阵
Sm=sig*toeplitz(c(1,rep(alpha, p-1)));
Sm
#Sm=sig*toeplitz(alpha^(c(0:(p-1))));
#Sm
ev<-eigen(Sm); 
lam=ev$values;
vec=ev$vectors;
Sr=vec%*%sqrt(diag(lam))%*%t(vec)
#Sm-Sr%*%Sr;
x=t(t(matrix(rnorm(n*p),ncol=p)%*%Sr)+mu);
apply(x,2,mean)
var(x)
friedman.test(x)

2.代码解释

friedman检验的函数为friedman.test(y,groups,blocks,...),或者friedman.test(formula,data,subset,na.action,...)

 3.结果分析

 由均值的估计得出,μ1与μ2、μ3存在较大差异。协方差阵显示出不同样本之间存在较大的相关性。Friedman检验的P值非常小,故拒绝原假设,即样本之间存在显著差异。

这篇关于R语言——单因素方差分析笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665701

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五