R语言——单因素方差分析笔记

2024-02-01 01:40

本文主要是介绍R语言——单因素方差分析笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这学期有一门选修应用统计软件。课上理论讲得不清不楚,编程根本练不着,老师布置的作业就是将他发的代码运行一下写个报告,简直就是机械化的浪费时间的操作。为了不白学这门课,在此稍加整理课上的笔记,供自己以后回顾复习。

一、aov函数

(一)样本服从正态分布

1.代码示例

n1=150;  ##n1=50
n2=150;  ##n2=50
n3=150;  ##n3=50
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
mouse<-data.frame(
X=c(x1,x2,x3),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3))))
mouse.aov<-aov(X~A,data=mouse)
source("anova.tab.R"); anova.tab(mouse.aov)

2.部分代码解释

(1)aov()函数提供方差分析表计算,使用方法:aov(formula,data=NULL,projections=FALSE,qr=TRUE,contrasts=NULL,...),结合在线帮助理解。

(2)factor:转换为因子类型,因子在整个计算过程中不作为数值,而是一个”符号”。

3.结果分析

 

 图①是样本量取50的运行结果,P值较大,接受原假设,即三类样本无显著差异;图②是样本量取150的运行结果,P值较小,拒绝原假设,即三类样本存在显著差异。可见样本量越大,检验结果越准确。

(二)样本误差服从T分布(T分布尾部比正态分布重)

1.代码示例
n1=150;
n2=150;
n3=150;
u1=0.5;
u2=0;
u3=0;
df=3  ##自由度为3
x1=u1+rt(n1,df);  ##误差生成t分布随机数
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
mouse<-data.frame(
X=c(x1,x2,x3),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3))))
mouse.aov<-aov(X~A, data=mouse)
source("anova.tab.R"); anova.tab(mouse.aov)

2.结果分析

 在样本量较大的情况下,所得P值较小,可拒绝原假设。故当样本量较大,误差的分布对于检验的影响较小,而样本均值的差异对于检验影响较大。

二、KW检验

KW检验的优点:对于误差分布无限制,对误差分布无正态性假设。

(一)样本服从正态分布

1.代码示例

n1=50;
n2=50;
n3=50;
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
food<-data.frame(
x=c(x1,x2,x3),
g=factor(rep(1:3, c(n1,n2,n3))))
kruskal.test(x~g, data=food)

2.结果分析

样本量为50时,就能得到在显著性水平取0.05时拒绝原假设的结果。可见KW检验可能比aov函数具有更好的检验效果。

(二)样本误差服从T分布

1.代码示例

n1=200;
n2=200;
n3=200;
u1=0.5;
u2=0;
u3=0;
df=3
x1=u1+rt(n1,df);
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
food<-data.frame(
x=c(x1,x2,x3),
g=factor(rep(1:3, c(n1,n2,n3))))
kruskal.test(x~g, data=food)

2.代码解释

kruskal.test(formula,data,subset,na.action,...)是K-W秩和检验的函数

3.结果分析

 

P值很小,故拒绝原假设,即三组样本均值存在显著差异。

三、pairwise检验

(一)样本服从正态分布

1.代码示例

n1=100;
n2=100;
n3=100;
u1=0.5;
u2=0;
u3=0;
csd=1;
x1=rnorm(n1,u1,csd);
x2=rnorm(n2,u2,csd);
x3=rnorm(n3,u3,csd);
X=c(x1,x2,x3)
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3)))
mu<-c(mean(X[A==1]), mean(X[A==2]), mean(X[A==3])); mu
pairwise.t.test(X, A, p.adjust.method = "none")
pairwise.t.test(X, A, p.adjust.method = "holm")
pairwise.t.test(X, A, p.adjust.method = "bonferroni")

2.代码解释

pairwise.t.test()函数用于均值的多重比较,其使用方法如下:pairwise.t.test(x,g,p.adjust.method=p.adjust.methods,pool.sd=TRUE,...)

其中x是响应向量,g是因子向量,p.adjust.method是P值的调整方法。其中,调整方法由p.adjust()给出,详见p.adjust()函数的在线帮助。若p.adjust.method = "none",表示不做任何调整;缺省值按“holm”作调整。

3.结果分析

首先由均值的估计可见,μ1与μ2、μ3存在较大差异。利用三种pairwise的检验方法,均得到μ1与μ2、μ3的检验P值低于显著性水平0.05,故μ1与μ2、μ3存在显著差异;而μ2与μ3之间检验P值较大,故接受原假设,即μ2与μ3之间无显著差异。

(二)样本误差服从自由度为3的T分布

1.代码示例

n1=200;
n2=200;
n3=200;
u1=0.5;
u2=0;
u3=0;
df=3
x1=u1+rt(n1,df);
x2=u2+rt(n2,df);
x3=u3+rt(n3,df);
X=c(x1,x2,x3)
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3)))
mu<-c(mean(X[A==1]), mean(X[A==2]), mean(X[A==3])); mu
pairwise.t.test(X, A, p.adjust.method = "none")
pairwise.t.test(X, A, p.adjust.method = "holm")
pairwise.t.test(X, A, p.adjust.method = "bonferroni")

2.结果分析

 分析结果同上。

PS:有时运行结果会出现错误,得到不准确的检验结果。多运行几次,能够避免取错误的检验结果。

四、Bartlett检验

1.代码示例

n1=50;
n2=50;
n3=50;
n4=50;
lamp<-data.frame(
X=c(rnorm(n1,0,1),rnorm(n2,0,2),rnorm(n3,0,2),rnorm(n4,0,2)),
A=factor(c(rep(1,n1),rep(2,n2), rep(3,n3), rep(4,n4))))
bartlett.test(X~A, data=lamp)
bartlett.test(lamp$X, lamp$A)  ##bartlett.test函数的另一种使用方法 

2.代码解释

bartlett.test()函数用于方差齐性检验,其使用格式为bartlett.test(x,g,..),其中x是由数据构成的向量或列表,g是由因子构成的向量,x是列表时,此项无效;或使用另一种格式bartlett.test(formula,data,subset,na.action,...),可借助在线帮助理解各参数含义。

3.结果分析

 所得P值很小,故拒绝原假设,即样本间的方差存在显著差异。符合样本的设定。

五、friedman检验

friedman检验用于多个样本的比较,如果它们的总体不能满足正态性和方差齐性的要求。firedman检验原假设为:各方法处理效果无显著差异。

1.代码示例

##各变量之间有相关性##
n=1000
p=3;
alpha=0.5;
sig=1;
##均值
mu=c(0.5,rep(0,p-1));
##协方差矩阵
Sm=sig*toeplitz(c(1,rep(alpha, p-1)));
Sm
#Sm=sig*toeplitz(alpha^(c(0:(p-1))));
#Sm
ev<-eigen(Sm); 
lam=ev$values;
vec=ev$vectors;
Sr=vec%*%sqrt(diag(lam))%*%t(vec)
#Sm-Sr%*%Sr;
x=t(t(matrix(rnorm(n*p),ncol=p)%*%Sr)+mu);
apply(x,2,mean)
var(x)
friedman.test(x)

2.代码解释

friedman检验的函数为friedman.test(y,groups,blocks,...),或者friedman.test(formula,data,subset,na.action,...)

 3.结果分析

 由均值的估计得出,μ1与μ2、μ3存在较大差异。协方差阵显示出不同样本之间存在较大的相关性。Friedman检验的P值非常小,故拒绝原假设,即样本之间存在显著差异。

这篇关于R语言——单因素方差分析笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665701

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据