C语言KR圣经笔记 6.4结构体指针 6.5自引用结构体

2024-01-31 15:36

本文主要是介绍C语言KR圣经笔记 6.4结构体指针 6.5自引用结构体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6.4 结构体指针

为了说明结构体指针和数组的某些注意事项,我们把上一节的关键字计数程序再写一次,不过这回使用指针而不是数组下标。

keytab 的外部声明不需要动,但 main 和 binsearch 确实需要修改。

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#define MAXWORD 1000int getword(char *, int);
struct key *binsearch(char *, struct key *, int);/* C语言关键字计数,指针版本 */
main()
{char word[MAXWORD];struct key *p;while (getword(word, MAXRORD) != EOF)if (isalpha(word[0]))if ((p=binsearch(word, keytab, NKEYS)) != NULL)p->count++;for (p = keytab; p < keytab + NKEYS; p++)if (p->count > 0)printf("%4d %s", p->count, p->word);return 0;
}/* binsearch:在tab[0]...tab[n-1]中查找word */
struct key *binsearch(char *word, struct key *tab, int n)
{int cond;struct key *low = &tab[0];struct key *high = &tab[n-1];struct key *mid;while (low <= high) {mid = low + (high - low) / 2;if ((cond = strcmp(word, mid->word)) < 0)high = mid;else if (cond > 0)low = mid + 1;elsereturn mid;}return NULL;
}

这里有几个地方值得一提。首先,binsearch 的声明必须指出它返回 struct key 的指针而不是(第三章版本里面的)整数;在函数原型和  binsearch 内部都声明了这一点。如果 binsearch 找到一个单词,则返回其指针;若没找到,则返回NULL。

第二,keytab 的元素现在通过指针和不是数组下标来访问。这要求对 binsearch 做大改。

low 和 high 的初始化表达式现在分别是指向表的开头和结尾的指针。

中间元素的计算不能简单地使用

mid = (low + high) / 2     /* 错误 */

因为两个指针相加是非法的。然而,两个指针相减是合法的,因此 high - low 为元素的个数,而

mid = low + (high-low) / 2

就使 mid 指向 low 和 high 中间的元素。

最重要的改变在于调整算法,以保证它不会生成非法的指针,或是试图访问数组之外的元素。问题是 &tab[-1] 和 &tab[n] 都在数组 tab 的范围之外。前者是严格非法的,而后者的解引用是非法的。然而,C语言的定义保证,对于超过数组末尾后的第一个元素(即 &tab[n]),其指针运算能正确执行。

在 main 函数中,有

for (p = keytab; p < keytab + NKEYS; p++)

如果 p 是指向结构体的指针,对 p  的指针运算会将结构体的大小考虑在内,因此 p++ 能正确地对 p 递增,使其指向结构体数组的下一个元素,而 for 循环中的判断条件能在正确的时候停止循环。

但是,不能假定结构体的长度是其成员长度之和。由于不同对象的对齐要求,结构体中可能存在未名的“空洞”。例如,如果 char 是一字节而 int 是四字节,如下结构体

struct {char c;int i;
};

可能会占八个字节,而不是五个。sizeof 操作符能返回正确的值。

最后,说一些关于程序格式的题外话:当函数返回复杂类型如结构体指针时,如

struct key *binsearch(char *word, struct key *tab, int n)

此时在文本编辑器中很难看到或者找到函数名称。因此,有时会使用另一种代码风格:

struct key *
binsearch(char *word, struct key *tab, int n)

这是个人品味的问题;选择一种你喜欢的格式并坚持使用下去。【不要反复横跳】

6.5 自引用结构体

假定我们要处理更通用的问题:计算输入中所有单词的出现次数。由于不能事先知道单词列表,我们就无法方便地对其排序并使用二分搜索。而且我们不能在每个单词输入时,使用线性搜索来判断该单词是否已经出现过;否则程序会运行太久。(更准确地说,它的运行时间可能与输入的单词数量成平方关系。)我们要怎样组织数据,才能高效地处理一列任意单词呢?

一种解决方案,是使目前为止的所有单词都一直保持有序,即在每个单词输入时,都将它放到正确排序的位置上。然而,不应该通过在一个线性数组中移动单词来做到这一点——那也会太花时间。我们会使用一个叫做二叉树的数据结构来取而代之。

这棵树在每个“节点”上保存每个不同的单词;每个节点包含

  • 指向单词文本的指针
  • 单词的出现次数
  • 指向左子节点的指针
  • 指向右子节点的指针

任何节点都不能有超过两个的子节点;它只能有零个或一个子节点。

节点按这样的规则来维护:任意节点的左子树只包含字典序小于该节点单词的单词;而右子树只包含字典序大于该节点单词的单词。下图这棵树是由句子 “now is the time for all good men to come to the aid of their party” 构成的,每遇到一个单词就插入对应的节点(若是旧单词则更新节点的计数)。

为了判断一个新输入的词是否已经在树上,要从根节点开始,将新输入的词与节点中的词进行比较。如果匹配,则答案是肯定的。如果新词比树上的词小,则继续在左边的子节点搜索,否则在右边的子节点搜索。如果在对应的方向上没有子节点,说明新词不在树上,而此时,这个空位正好可以用来存放这个新词。这个过程是递归的,因为从任意节点开始的搜索,都会使用其子节点之一来搜索。因此,插入和打印也将非常自然地使用递归例程来实现。

回到节点的描述上来,用一个由四部分组成的结构体来表示它是很适合的:

struct tnode {             /* 树节点: */char *word;            /* 指向文本 */int count;             /* 出现次数 */struct tnode *left;    /* 左子节点 */struct tnode *right;   /* 右子节点 */
};

节点的递归声明看起来有问题,但它是正确的。在结构体中包含自身的实例是非法的,但是

struct tnode *left;

将 left 声明为 tnode 类型的指针,而不是 tnode 本身。

偶尔我们也会需要自引用结构体的变体:两个结构体互相引用。其处理方式为

struct t {...struct s *p;    /* p 指向一个 s */
};
struct s {...struct t *q;    /* q 指向一个 t */
};

因为已经有了一些支持例程(如我们之前所写的 getword),整个程序的代码量少的惊人。主例程使用 getword 读取每个单词,并使用 addtree 将其放到树上。

#include <stdio.h>
#include <string.h>
#include <ctype.h>#define MAXWORD 100
struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);
int getword(char *, int);/* 单词频率计算 */
main()
{struct tnode *root;char word[MAXWORD];root = NULL;while (getword(word, MAXWORD) != EOF)if (isalpha(word[0]))root = addtree(root, word);treeprint(root);return 0;
}

函数 addtree 是递归的。单词由 main 给到树的顶级(根节点)。在每个阶段,单词都会与节点中已经保存的单词进行比较,然后通过对 addtree的递归调用,“渗透”到左边或者右边的子树上。最终,单词不是匹配到树中的某个节点(此时对计数器递增),就是遇到一个空指针,此时说明必须创建一个节点并加入到树上。如果创建了一个新节点,addtree 会返回指向它的指针,该指针需要被添加到父节点上。

struct tnode *talloc(void);
char *strdup(char *);/* addtree: 在p的位置或其下层,加入带w的节点 */
struct tnode *addtree(struct tnode *p, char *w)
{int cond;if (p == NULL) {            /* 来了新词 */p = talloc();           /* 创建新节点 */p->word = strdup(w);p->count = 1;p->left = p->right = NULL;} else if ((cond = strcmp(p->word, w)) == 0)p->count++;            /* 重复单词 */else if (cond < 0)         /* 小于左子树 */p->left = addtree(p->left, w);else                       /* 大于右子树 */p->right = addtree(p->right, w);return p;
}

新节点的存储空间通过 talloc 例程获取,它返回一个指针,指向一段适合保存树节点的可用内存空间,而新单词通过 strdup 被拷贝到一个隐藏的内存空间。(我们很快会讲到这两个例程。)然后是初始化单词数量,并把两个子节点设为空。这部分代码只会在新节点加入时,在树的叶子节点上执行。我们(很不明智地)省略了对 stalloc 和 strdup 返回值的错误校验。

treeprint 有序地打印树;在每个节点上,它打印左子树(所有比当前节点单词小的),然后是当前节点上的单词,然后是右子树(所有比当前节点单词大的)。如果你对递归感觉不太有把握,可以模拟 treeprint 来打印前面显示的那棵树。

/* treeprint: 中序遍历树p */
void treeprint(struct tnode *p)
{if (p != NULL) {treeprint(p->left);printf("%4d %s\n", p->count, p->word);treeprint(p->right);}
}

实用性说明:如果由于单词不是随机进入而导致树“不平衡”,程序的运行时间可能会增长太多。最坏的情况下,如果单词都已经排过序了,那这个程序就会执行代价高昂的线性搜索。有文献论述了不会受到这种最坏情况影响的二叉树,但我们不在此描述【请自行深入研究】

在结束这个例子之前,还值得简单讲下关于内存分配器问题的题外话。显然,理想的情况是一个程序里面只有一个内存分配器,即使这个程序会分配各种不同的对象。但如果一个分配器被用来处理,比如说 char 指针和 struct tnode 指针的请求,会出现两个问题。第一,它该如何满足大部分真实机器的要求,即某种类型的对象必须满足对齐限制(例如,整数必须位于偶数地址)?第二,声明要怎么写,才能处理一个分配器返回不同类型对象的指针的情况?

【第一个问题】对齐要求通常可以很容易满足,代价是浪费一些空间,即通过保证让分配器总是返回满足所有对齐限制的指针来做到。第五章的 alloc 函数不满足任何特定的对齐要求,因此我们这里会使用标准库函数 malloc,它当然是满足的。在第八章,我们会给出一种实现 malloc 的方案。

【第二个问题】如 malloc 这样的函数,它们的类型声明,是所有认真对待类型检查的语言都会遇到的烦人问题。在 C 中,正确的方法是把 malloc 声明为 一个返回 void 指针的函数,然后显式地进行强制类型,转换为想要的类型。malloc 及其相关例程声明在标准库头文件<stdlib.h>中。因此 talloc 可以写成

#include <stdlib.h>struct tnode *talloc(void)
{return (struct tnode *)malloc(sizeof(struct tnode));
}

strdup 仅仅是把参数传过来的字符串拷贝到一个安全的空间,后者通过调用 malloc 获取

char *strdup(char *s)    /* 复制s */
{char *p;p = (char *)malloc(sizeof(strlen(s)+1));  /* +1是给'\0'的 */if (p != NULL)strcpy(p, s);return p;
}

如果没有可用空间,则malloc 返回 NULL;strdup 把这个值往上传,让它的调用者来做错误处理。

调用 malloc 获取的空间可以自由地通过调用 free 释放,以供后续重复使用;见第七和第八章。

这篇关于C语言KR圣经笔记 6.4结构体指针 6.5自引用结构体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/664253

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2