关于Keras里的Sequential(序列模型)转化为Model(函数模型)的问题

2024-01-31 09:50

本文主要是介绍关于Keras里的Sequential(序列模型)转化为Model(函数模型)的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、序列模型
  • 二、改为函数模型
    • 1.错误代码
  • 总结


前言

想在keras模型上加上注意力机制,于是把keras的序列模型转化为函数模型,结果发现参数维度不一致的问题,结果也变差了。跟踪问题后续发现是转为函数模型后,网络共享层出现了问题。

一、序列模型

该部分采用的是add添加网络层,由于存在多次重复调用相同网络层的情况,因此封装成一个自定义函数:

  def create_base_network(input_dim):seq = Sequential()seq.add(Conv2D(64, 5, activation='relu', padding='same', name='conv1', input_shape=input_dim))seq.add(Conv2D(128, 4, activation='relu', padding='same', name='conv2'))seq.add(Conv2D(256, 4, activation='relu', padding='same', name='conv3'))seq.add(Conv2D(64, 1, activation='relu', padding='same', name='conv4'))seq.add(MaxPooling2D(2, 2, name='pool1'))seq.add(Flatten(name='fla1'))seq.add(Dense(512, activation='relu', name='dense1'))seq.add(Reshape((1, 512), name='reshape'))

整体代码,该模型存在多个输入(6个):

	def create_base_network(input_dim):seq = Sequential()seq.add(Conv2D(64, 5, activation='relu', padding='same', name='conv1', input_shape=input_dim))seq.add(Conv2D(128, 4, activation='relu', padding='same', name='conv2'))seq.add(Conv2D(256, 4, activation='relu', padding='same', name='conv3'))seq.add(Conv2D(64, 1, activation='relu', padding='same', name='conv4'))seq.add(MaxPooling2D(2, 2, name='pool1'))seq.add(Flatten(name='fla1'))seq.add(Dense(512, activation='relu', name='dense1'))seq.add(Reshape((1, 512), name='reshape'))return seqbase_network = create_base_network(img_size)input_1 = Input(shape=img_size)input_2 = Input(shape=img_size)input_3 = Input(shape=img_size)input_4 = Input(shape=img_size)input_5 = Input(shape=img_size)input_6 = Input(shape=img_size)print('the shape of base1:', base_network(input_1).shape)   # (, 1, 512)out_all = Concatenate(axis=1)([base_network(input_1), base_network(input_2), base_network(input_3), base_network(input_4), base_network(input_5), base_network(input_6)])print('****', out_all.shape)   # (, 6, 512)lstm_layer = LSTM(128, name = 'lstm')(out_all)out_puts = Dense(3, activation = 'softmax', name = 'out')(lstm_layer)model = Model([input_1,input_2,input_3,input_4,input_5,input_6], out_puts)model.summary()

网络模型:
在这里插入图片描述

二、改为函数模型

1.错误代码

第一次更改网络模型后,虽然运行未报错,但参数变多,模型性能也下降了,如下:

   def create_base_network(input_dim):x = Conv2D(64, 5, activation='relu', padding='same')(input_dim)x = Conv2D(128, 4, activation='relu', padding='same')(x)x = Conv2D(256, 4, activation='relu', padding='same')(x)x = Conv2D(64, 1, activation='relu', padding='same')(x)x = MaxPooling2D(2, 2)(x)x = Flatten()(x)x = Dense(512, activation='relu')(x)x = Reshape((1, 512))(x)return xinput_1 = Input(shape=img_size)input_2 = Input(shape=img_size)input_3 = Input(shape=img_size)input_4 = Input(shape=img_size)input_5 = Input(shape=img_size)input_6 = Input(shape=img_size)base_network_1 = create_base_network(input_1)base_network_2 = create_base_network(input_2)base_network_3 = create_base_network(input_3)base_network_4 = create_base_network(input_4)base_network_5 = create_base_network(input_5)base_network_6 = create_base_network(input_6)# print('the shape of base1:', base_network(input_1).shape)   # (, 1, 512)out_all = Concatenate(axis = 1)(  # 维度不变, 维度拼接,第一维度变为原来的6[base_network_1, base_network_2, base_network_3, base_network_4, base_network_5, base_network_6])print('****', out_all.shape)   # (, 6, 512)lstm_layer = LSTM(128, name = 'lstm')(out_all)out_puts = Dense(3, activation = 'softmax', name = 'out')(lstm_layer)model = Model(inputs = [input_1, input_2, input_3, input_4, input_5, input_6], outputs = out_puts)  # 6个输入model.summary()

结果模型输出如下:
在这里插入图片描述
可以看到,模型的参数变为了原来的6倍多,改了很多次,后来发现,原来是因为序列模型中的base_network = create_base_network(img_size)相当于已将模型实例化成了一个model,后续调用时只传入参数,而不更改模型结构。

而改为Model API后:
base_network_1 = create_base_network(input_1)
...
base_network_6 = create_base_network(input_6)

前面定义的 def create_base_network( inputs),并未进行实例化,后续相当于创建了6次相关网络层,应该先实例化,应当改为以下部分:

# 建立网络共享层
x1 = Conv2D(64, 5, activation = 'relu', padding = 'same', name= 'conv1')
x2 = Conv2D(128, 4, activation = 'relu', padding = 'same', name = 'conv2')
x3 = Conv2D(256, 4, activation = 'relu', padding = 'same', name = 'conv3')
x4 = Conv2D(64, 1, activation = 'relu', padding = 'same', name = 'conv4')
x5 = MaxPooling2D(2, 2)
x6 = Flatten()
x7 = Dense(512, activation = 'relu')
x8 = Reshape((1, 512))input_1 = Input(shape = img_size)   # 得到6个输入
input_2 = Input(shape = img_size)
input_3 = Input(shape = img_size)
input_4 = Input(shape = img_size)
input_5 = Input(shape = img_size)
input_6 = Input(shape = img_size)base_network_1 = x8(x7(x6(x5(x4(x3(x2(x1(input_1))))))))
base_network_2 = x8(x7(x6(x5(x4(x3(x2(x1(input_2))))))))
base_network_3 = x8(x7(x6(x5(x4(x3(x2(x1(input_3))))))))
base_network_4 = x8(x7(x6(x5(x4(x3(x2(x1(input_4))))))))
base_network_5 = x8(x7(x6(x5(x4(x3(x2(x1(input_5))))))))
base_network_6 = x8(x7(x6(x5(x4(x3(x2(x1(input_6))))))))# 输入连接
out_all = Concatenate(axis = 1)(                            # 维度不变, 维度拼接,第一维度变为原来的6[base_network_1, base_network_2, base_network_3, base_network_4, base_network_5, base_network_6])# lstm layer
lstm_layer = LSTM(128, name = 'lstm3')(out_all)
# dense layer
out_layer = Dense(3, activation = 'softmax', name = 'out')(lstm_layer)
model = Model(inputs = [input_1, input_2, input_3, input_4, input_5, input_6], outputs = out_layer)  # 6个输入
model.summary()

总结

Keras里的函数模型,如果想要多个输入共享多个网络层,
还是得将各个层实例化,不能偷懒。。。

这篇关于关于Keras里的Sequential(序列模型)转化为Model(函数模型)的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663352

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、