第十四届蓝桥杯国赛 C++ A 组 E 题——第K小的和(AC)

2024-01-30 23:20

本文主要是介绍第十四届蓝桥杯国赛 C++ A 组 E 题——第K小的和(AC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 第K小的和
    • 1. 问题描述
    • 2. 输入格式
    • 3. 输出格式
    • 4. 样例输入
    • 5. 样例输出
    • 6. 评测用例规模与约定
    • 7. 原题链接
  • 2. 解题思路
  • 3. AC_Code

1. 第K小的和

前置知识点:二分,排序

1. 问题描述

给定两个序列 A , B A, B A,B,长度分别为 n , m n, m n,m

设另有一个序列 C C C 中包含了 A , B A, B A,B 中的数两两相加的结果 ( C C C 中共有 n × m n \times m n×m 个数)。问 C C C 中第 K K K 小的数是多少。请注意重复的数需要计算多次。例如 1 , 1 , 2 , 3 1,1,2,3 1,1,2,3 中,最小和次小都是 1 1 1,而 3 3 3 是第 4 4 4 小。

2. 输入格式

输入的第一行包含三个整数 n , m , K n, m, K n,m,K,相邻两个整数之间使用一个空格分隔。

第二行包含 n n n 个整数,分别表示 A 1 , A 2 , … , A n A_1, A_2, \ldots, A_n A1,A2,,An,相邻两个整数之间使用一个空格分隔。

第三行包含 m m m 个整数,分别表示 B 1 , B 2 , … , B m B_1, B_2, \ldots, B_m B1,B2,,Bm,相邻两个整数之间使用一个空格分隔。

3. 输出格式

输出一行包含一个整数表示答案。

4. 样例输入

3 4 5
1 3 4
2 3 5 6

5. 样例输出

6

6. 评测用例规模与约定

  • 对于 40 % 40\% 40% 的评测用例, n , m ≤ 5000 n, m \leq 5000 n,m5000 A i , B i ≤ 1000 A_i, B_i \leq 1000 Ai,Bi1000;
  • 对于所有评测用例, 1 ≤ n , m ≤ 1 0 5 1 \leq n, m \leq 10^5 1n,m105 1 ≤ A i , B i ≤ 1 0 9 1 \leq A_i, B_i \leq 10^9 1Ai,Bi109 1 ≤ K ≤ n × m 1 \leq K \leq n \times m 1Kn×m

7. 原题链接

第K小的和

2. 解题思路

让我们先考虑一个暴力解法:我们可以枚举出所有 n × m n \times m n×m 个数,将其存入数组并进行排序,然后输出第 K K K 大的数即可求解。然而,这种解法的时间复杂度为 O ( n m log ⁡ ( n m ) ) O(nm \log(nm)) O(nmlog(nm)),空间复杂度为 O ( n m ) O(nm) O(nm),这将导致超时和内存溢出。

于是,我们需要寻找一个更高效的解决方案。让我们来思考一个问题:在一个序列中,第 K K K 大的数 x x x 有什么特性?

这需要满足数组中小于等于 x x x 的数至少有 K K K 个。同时,我们可以观察到,对于一个大于 x x x 的数 y y y,序列中小于等于 y y y 的数也一定至少有 K K K 个。对于一个小于 x x x 的数 z z z,序列中小于等于 z z z 的数肯定少于 K K K 个。

这让我们发现,寻找序列中的第 K K K 大的数,其实等同于寻找序列中小于等于当前数的数量至少有 K K K 个的最小值。因此,我们可以采用二分查找的策略。

当考虑答案的下界时, A A A B B B 都取 1 1 1,那么 C C C 中的数全部为 2 2 2,所以答案的下界是 2 2 2。而对于上界,当 A A A B B B 都取 1 0 9 10^9 109 C C C 中的数全部为 2 × 1 0 9 2 \times 10^9 2×109,所以答案的上界是 2 × 1 0 9 2 \times 10^9 2×109

我们的关键问题在于如何编写二分查找中的 check 函数,即如何确定在 n × m n \times m n×m 个数中,有多少个数比一个给定的整数 x x x 小。直接遍历这 n × m n \times m n×m 个数显然是不可行的,我们需要找到一个优化的方法。一个可行的策略是先将 B B B 数组排序,然后遍历数组 A A A。对于每个 A i A_i Ai,我们需要在 B B B 数组中找到满足 B j + A i ≤ x B_j + A_i \leq x Bj+Aix 的最大下标 j ( j ∈ [ 1 , m ] ) j(j \in[1,m]) j(j[1,m])

这个问题等价于在 B B B 数组中找到最大的数,使其小于等于 x − A i x - A_i xAi,这显然是一个基础的二分查找问题。这样我们就能以 O ( log ⁡ m ) O(\log m) O(logm) 的复杂度统计每个 A i A_i Ai 的贡献,加上遍历数组 A A A 的复杂度为 O ( n ) O(n) O(n),因此每次 check 函数的复杂度为 O ( n log ⁡ m ) O(n \log m) O(nlogm)

对于每次二分查找的数 x x x,在 check 函数中,如果我们统计到有至少 K K K 个数小于等于 x x x,我们就返回 true,否则返回 false

因此,这种解法的时间复杂度为: O ( n log ⁡ ( m ) log ⁡ ( 2 × 1 0 9 ) ) O(n \log(m) \log(2 \times 10^9)) O(nlog(m)log(2×109))

3. AC_Code

  • C++
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;LL n, m, k;
void solve() {cin >> n >> m >> k;vector<int> a(n), b(m);for (int i = 0; i < n; ++i) {cin >> a[i];}for (int i = 0; i < m; ++i) {cin >> b[i];}sort(b.begin(), b.end());LL l = 2, r = 2e9;auto check = [&](LL x) {LL res = 0;for (int i = 0; i < n; ++i) {res += upper_bound(b.begin(), b.end(), x - a[i]) - b.begin();}return res >= k;};while (l < r) {LL mid = l + r >> 1;if (check(mid))r = mid;elsel = mid + 1;}cout << r << '\n';
}
int main() {ios_base ::sync_with_stdio(false);cin.tie(0);cout << setiosflags(ios::fixed) << setprecision(2);int t = 1;while (t--) {solve();}return 0;
}
  • Java
import java.util.*;
import java.io.*;public class Main {static long n, m, k;static long ans = 0;static boolean check(long x, long[] a, long[] b) {long res = 0;for (int i = 0; i < n; ++i) {res += upperBound(b, x - a[i]);}return res >= k;}static int upperBound(long[] a, long x) {int l = 0, r = a.length;while (l < r) {int mid = (l + r) / 2;if (a[mid] <= x) l = mid + 1;else r = mid;}return l;}public static void main(String[] args) {Scanner sc = new Scanner(System.in);n = sc.nextLong();m = sc.nextLong();k = sc.nextLong();long[] a = new long[(int) n];long[] b = new long[(int) m];for (int i = 0; i < n; ++i) {a[i] = sc.nextLong();}for (int i = 0; i < m; ++i) {b[i] = sc.nextLong();}Arrays.sort(b);long l = 2, r = (long) 2e9;while (l < r) {long mid = l + (r - l) / 2;if (check(mid, a, b))r = mid;elsel = mid + 1;}System.out.println(r);}}
  • Python
import bisectn, m, k = map(int, input().split())
a = list(map(int, input().split()))
b = sorted(list(map(int, input().split())))l, r = 2, int(2e9)def check(x):res = 0for i in range(n):res += bisect.bisect_right(b, x - a[i])return res >= kwhile l < r:mid = l + (r - l) // 2if check(mid):r = midelse:l = mid + 1print(r)

这篇关于第十四届蓝桥杯国赛 C++ A 组 E 题——第K小的和(AC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661873

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ