大数据 - Hadoop系列《四》- MapReduce(分布式计算引擎)的核心思想

本文主要是介绍大数据 - Hadoop系列《四》- MapReduce(分布式计算引擎)的核心思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇:

大数据 - Hadoop系列《三》- MapReduce(分布式计算引擎)概述-CSDN博客

目录

13.1 MapReduce实例进程

13.2 阶段组成

13.4 概述

13.4.1 🥙Map阶段(映射)

13.4.2 🥙Reduce阶段执行过程

13.4.3 🥙Shuffle机制


🐶13.1 MapReduce实例进程

一个完整的MapReduce程序在分布式运行时有三类

  • MRAppMaster:负责整个MR程序的过程调度及状态协调

  • MapTask:负责map阶段的整个数据处理流程

  • ReduceTask:负责reduce阶段的整个数据处理流程

🐶13.2 阶段组成

  • 一个MapReduce编程模型中只能包含一个Map阶段和一个Reduce阶段,或者只有Map阶段

  • 不能有诸如多个Map阶段、多个Reduce阶段的情景出现。

  • 如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序串行运行。

13.3 MapReduce数据类型 

注意:整个MapReduce程序中,数据都是以kv键值对的形式流转的

在实际编程解决各种业务问题中,需要考虑每个阶段的输入输出kv分别是什么

MapReduce内置了很多默认属性,比如排序、分组等,都和数据的k有关,所以说kv的类型数据确定及其重要的。

🐶13.4 概述

一个最终完整版本的MR程序需要用户编写的代码Hadoop自己实现的代码整合在一起才可以。

其中用户负责map、reduce两个阶段的业务问题,hadoop负责底层所有的技术问题;

由于MapReduce计算引擎天生的弊端(慢),当下企业直接使用率以及日薄西山了,所以在企业中工作很少涉及到MapReduce直接编程,但是某些软件的背后还依赖MapReduce引擎。

可以通过官方提供的示例来感受MapReduce及其内部执行流程,因为后续的新的计算引擎比如Spark,当中就有MapReduce深深的影子存在。

MR的核心思想如下图所示:

MapReduce程序的工作分两个阶段进行:

13.4.1 🥙Map阶段(映射)

这个函数单独地应用在每个单元格上的操作就属于映射(Map).

  • 第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划

默认Split size=Block size(128M),每一个切片由一个MapTask处理。(getsplits)

  • 第二阶段:对切片中的数据按照一定的规则读取解析返回<key,value>对。

默认是按行读取数据,key是每一行的起始位置偏移量,value是本行的文本内容(TextInputFormat)

  • 第三阶段:调用Mapper类中的map方法处理数据

每读取解析出来的一个<key,value>,调用一次map方法

  • 第四阶段:按照一定规则对Map输出的键值对进行分区partition.默认不分区,因为只有一个reducetask,分区的数量就是reducetask运行的数量。

  • 第五阶段:Map输出数据写入内存缓冲区,达到比例溢出到磁盘上。溢出spill的时候根据key进行排序sort.默认根据key字典序排序。

  • 第六阶段:对所有溢出文件进行最终的merge合并,成为一个文件。

13.4.2 🥙Reduce阶段执行过程

第一阶段:ReduceTask会主动从MapTask复制拉取属于需要自己处理的数据。

第二阶段:把拉取来的数据,全部进行合并merge,即把分散的数据合并成一个大的数据,再会合并的数据排序。

第三阶段:是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法。最后把这些输出的键值对写入到HDFS文件中。

13.4.3 🥙Shuffle机制

1. 概述

  • Shuffle的本意是洗牌、混洗的意思,把一组有规则的数据尽量打乱成无规则的数据。

  • 而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则“打乱”成具有一定规则的数据,以便reduce端接收处理。

  • 一般把从Map产生输出到Reduce取得数据作为输入之前的过程称作shuffle

2. Map端Shuffle

  • Collect阶段:将MapTask的结果收集输出到默认大小为100M的环形缓冲区,保留之前会对key进行分区的计算,默认Hash分区

  • Spill阶段:当内存中的数据量达到一定的阈值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将相同分区号和key的数据进行排序。

  • Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一下MapTask最终只产生一个中间数据文件。

3. Reducer端Shuffle

  • Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据。

  • Merger阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。

  • Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证copy的数据的最终整体有效性即可。

4. Shuffle机制弊端

  • Shuffle是MapReduce程序的核心和精髓,是MapReduce的灵魂所在。

  • Shuffle也是MapReduce被诟病最多的地方所在,MapReduce相比较于Spark、Flink计算引擎慢的原因,跟Shuffle机制有很大的关系。

  • Shuffle中频繁涉及到数据在内存、磁盘之间的多次往复。

 

这篇关于大数据 - Hadoop系列《四》- MapReduce(分布式计算引擎)的核心思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661734

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本