Python处理图片生成天际线(2024.1.29)

2024-01-30 21:12

本文主要是介绍Python处理图片生成天际线(2024.1.29),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、天际线简介

        天际线SkyLine)顾名思义就是天空与地面的边界线,人站在不同的高度,会看到不同的景色和地平线,天空与地面建筑物分离的标记线,不得不说,每天抬头仰望天空,相信大家都可以看到,它的的确确客观存在,美丽值得欣赏。

2、Python代码

#-*- coding:utf-8 -*-
import sys
from os.path import exists
import cv2
import numpy as npdef getImage(height, width, channels):image = np.zeros([height, width, 3], np.uint8) # 三通道顺序是BGR# 三层循环逐个修改像素点for row in range(height):for col in range(width):for c in range(channels):image[row, col, c] = 0return imagedef isWhite(pixel_value, threshold): #阈值可以取10、20、30、50、100res = Falseif pixel_value[0] > threshold and pixel_value[1] > threshold and pixel_value[2] > threshold: # 10、10、10 50、50、50 这里是天空和地面楼山的分界线,需要调参res = Truereturn resdef isPureWhite(pixel_value):res = Falseif pixel_value[0] == 255 and pixel_value[1] == 255 and pixel_value[2] == 255: # >3|>3|>3 10、10、10res = Truereturn resdef getRowNumberSpecificCol(image, col):res_row = -1height, width = image.shape[0:2]if col >= 0 and col < width:for row in range(0, height):pv = image[row][col]if(pv[0] > 0 and pv[1] > 0 and pv[2] >0):res_row = rowbreakreturn res_rowdef getEnhancedEdgeImageFromEdgeImage(edge_Image):edge_SrcImage = edge_Imageheight, width = edge_SrcImage.shape[0:2]for col in range(1, width):for row in range(0, height):pixel_value = edge_SrcImage[row][col]  # 计算红绿蓝三波段的平均值if isPureWhite(pixel_value):r_last = getRowNumberSpecificCol(edge_SrcImage, col - 1)if r_last:if row > r_last:minR, maxR = r_last, rowfor k in range(minR, maxR):edge_SrcImage[k][col - 1][0] = 255edge_SrcImage[k][col - 1][1] = 255edge_SrcImage[k][col - 1][2] = 255else:minR, maxR = row, r_lastfor k in range(minR, maxR):edge_SrcImage[k][col][0] = 255edge_SrcImage[k][col][1] = 255edge_SrcImage[k][col][2] = 255# cv2.imshow("Enhanced-edge-image", edge_SrcImage)return edge_SrcImagedef getFileExtensionname(filename):res = ".png"dot_index = -1for i in range(len(filename), 0):if filename[i] == '.':dot_index = ibreakif dot_index != -1:res = filename[dot_index: len(filename)-1]return resif __name__ == '__main__':origin_pic_filename = "D:/test.png"sky_ground_threshold = 30isDownSampling = Falseif (len(sys.argv) == 1):print(sys.argv[0])origin_pic_filename = ""elif(len(sys.argv) == 2):origin_pic_filename = str(sys.argv[1])elif(len(sys.argv) == 3):origin_pic_filename = str(sys.argv[1])sky_ground_threshold = int(sys.argv[2])elif (len(sys.argv) == 4):origin_pic_filename = str(sys.argv[1])sky_ground_threshold = int(sys.argv[2])if(int(sys.argv[3]) == 1):isDownSampling = Trueif origin_pic_filename != "" and sky_ground_threshold > 0:print(("输入图片文件名为:{0}").format(origin_pic_filename))print(("天空地面分界灰度阈值为:{0}").format(sky_ground_threshold))suffix_name = getFileExtensionname(origin_pic_filename)print(("后缀名为:{0}").format(suffix_name))srcImage = cv2.imread(origin_pic_filename)inputSrcImage = srcImageif isDownSampling:inputSrcImage = cv2.pyrDown(inputSrcImage)height, width = inputSrcImage.shape[0:2]print(("高度:{0}, 宽度:{1}").format(height, width))cv2.namedWindow('downsampling-image', cv2.WINDOW_AUTOSIZE)cv2.imshow("downsampling-image", inputSrcImage)Sobelx = cv2.Sobel(inputSrcImage, cv2.CV_64F, 1, 0)Sobely = cv2.Sobel(inputSrcImage, cv2.CV_64F, 0, 1)Sobelx = cv2.convertScaleAbs(Sobelx)Sobely = cv2.convertScaleAbs(Sobely)# cv2.imshow("sobel-x-Abs", Sobelx)# cv2.imshow("sobel-y-Abs", Sobely)Sobelxy = cv2.addWeighted(Sobelx, 0.5, Sobely, 0.5, 0)cv2.namedWindow('sobel-xy', cv2.WINDOW_AUTOSIZE)cv2.imshow('sobel-xy', Sobelxy)edgeImage = getImage(height, width, 3)for col in range(0, width):for row in range(0, height):pixel_value = Sobelxy[row][col]  # 计算红绿蓝三波段的平均值if isWhite(pixel_value, sky_ground_threshold):edgeImage[row][col][0] = 255edgeImage[row][col][1] = 255edgeImage[row][col][2] = 255breakcv2.namedWindow('edge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('edge-image', edgeImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-ZGetEdge.png"), edgeImage)enhanced_edgeImage = getEnhancedEdgeImageFromEdgeImage(edgeImage)cv2.namedWindow('enhanced-edge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('enhanced-edge-image', enhanced_edgeImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-EnhancedEdge.png"), enhanced_edgeImage)for col in range(0, width):for row in range(0, height):pixel_value = enhanced_edgeImage[row][col]  # 计算红绿蓝三波段的平均值if isPureWhite(pixel_value):if row+2 < height:inputSrcImage[row+2][col][0] = 0inputSrcImage[row+2][col][1] = 0inputSrcImage[row+2][col][2] = 255else:inputSrcImage[row][col][0] = 0inputSrcImage[row][col][1] = 0inputSrcImage[row][col][2] = 255# inputSrcImage[row][col][0] = 0# inputSrcImage[row][col][1] = 0# inputSrcImage[row][col][2] = 255# break #最开始从每列遍历从上到下找第一个分界点就停止才用breakcv2.namedWindow('RedEdge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('RedEdge-image', inputSrcImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-RedEdge.png"), inputSrcImage)cv2.waitKey(0)cv2.destroyAllWindows()print('Success!')cv2.waitKey()cv2.destroyAllWindows()

3、运行结果

        test.jpg下载

3.1 非下采样+边缘检测

python GetSkyLine.py test.jpg  100
原始图片
边缘点图片
边缘增强图片
sobel-xy处理后图片
downloadsampling图片
红色边缘叠加图片

3.2 下采样+边缘检测

python GetSkyLine.py test.jpg  50  1
原始图片
边缘点图片
边缘增强图片
downloadsampling图片
sobel-xy处理后图片
红色边缘叠加图片

4、小结

        在这个人世间,每个人都是独立的个体,身处浩荡洪流之中,难免身不由己,时而坚定,时而困惑,但我们还是应该永远相信美好的事情终将发生,要心怀一颗感恩的心,相信家人,相信自己,相信未来,坦然面对生活,接受平凡。

       关关难过关关过,前路漫漫亦灿灿

这篇关于Python处理图片生成天际线(2024.1.29)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661572

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker