DARPA TC-e3/e5数据集bin转json

2024-01-30 19:40
文章标签 数据 json bin tc e3 e5 darpa

本文主要是介绍DARPA TC-e3/e5数据集bin转json,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于这个数据集的一些基本信息就不赘述了,参考我之前的博客。DARPA TC-engagement5数据集官方工具可视化
两个方法:修改ELK可视化工具或直接使用自带的工具前者相对灵活,因为losgstash可以通过配置过滤器来修改字段;可以通过output选项设置文件名参数直接对日志进行分类,比如按事件类型写到相应的文件。但是目前有点小问题,每次json文件超过4.3G就会自动断掉,猜测应该是linux的文件大小有限制。这一点也可以在另一个自带的consumer工具中体现出来。后者更稳定,但是如果需要进一步研究其参数。

1. 修改可视化工具

官方给的工具是将解析的数据存到elasticsearch的,但是数据集的解压增长率非常恐怖,对空间要求很高。因此针对这个问题,我对工具主要进行了两个修改:

  • 利用logstash的插件直接将json输出到本地文件,删掉了grafana
  • 参考engagement3的数据格式重写logstash过滤器,对字段进行了删减和修改,剔除不必要字段。

修改之后的工具包放到了我的github-TC_Tool_modified,开源不易,记得star一下,感激不尽!

1.1 文件树介绍

在这里插入图片描述

文件内容
theia存放原始数据的文件夹
elasticsearch数据库,已经不需要了,但是logstash以来这个数据库,所以还是保留了
logs存放json文件的地方
logstash日志收集器,负责收集解压出来的log4j日志,然后输出到本地文件
docker-compose.yml镜像的配置文件
TCCDMDatum.avsc一个模式文件,用于规范化数据格式,负责从log到json的转换
tc-das-importer-1.0-SNAPSHOT-jar-with-dependencies.jar官方的java包,用于解压、读取并参考上述数据规范生成标准格式的数据通过socket发送

1.2 可修改配置

1.2.1 elastic search的内存限制(非必要)

docker-compose.yml中存在对于elasticsearch的内存限额,如果1G对于你的机器存在负担,可以尝试改为512、256等。
在这里插入图片描述

1.2.2 初始日志输出地址

我们可以通过命令java -Dlog4j.debug=true -cp .:tc-das-importer-1.0-SNAPSHOT-jar-with-dependencies.jar main.java.com.bbn.tc.DASImporter [原属数据路径] [模式文件路径] [输出IP] [输出端口] -v启动对于原始日志的解压和解析,启动前确保已有JAVA环境且logstash已成功启动。如果你采用C/S模式,这里的IP和端口可以修改为需要的地址。

1.2.3 初始日志接收地址

logstash负责接收Java包发送来的日志进行处理和输出到本地文件,可修改的的东西主要为4个:

  • docker-compose.yml中挂载的本地路径。
    在这里插入图片描述

  • logstash/pipline/logstash.conf中的监听端口。如果有修改发送地址,此处也应该修改为对应的端口
    在这里插入图片描述

  • logstash/pipline/logstash.conf中的过滤器。如果有额外需求,可以通过修改过滤器对字段进行调整

filter {json {source => "message"}mutate {//移除不必要字段remove_field=>["message","timestamp","file","@version","path","thread","host","method","priority","logger_name","class"]}//转换时间格式mutate {convert => {"[datum][com.bbn.tc.schema.avro.cdm20.Event][timestampNanos]" => "string"}}mutate {gsub => ["[datum][com.bbn.tc.schema.avro.cdm20.Event][timestampNanos]", "\d{6}$", ""]}date {match => ["[datum][com.bbn.tc.schema.avro.cdm20.Event][timestampNanos]", "UNIX_MS"]timezone => "America/New_York"locale => "en"  target => "@timestamp"}
}
  • logstash/pipline/logstash.conf中的输出文件的命名规则。为了避免单个文件过大,这里采用以小时为单位的时间格式命名。注释掉的输出方式为控制台输出,可以打开用以观察是否正常接收到数据,正式转换时再注释掉。
    在这里插入图片描述

1.3 启动方式

TC_Tool_modified/目录下使用docker-compose up -d启动日志接收器。需要docker环境和docker-compose包。
在任何目录下使用1.2.2中的命令格式启动日志解析器。如:

java -Dlog4j.debug=true -cp .:tc-das-importer-1.0-SNAPSHOT-jar-with-dependencies.jar main.java.com.bbn.tc.DASImporter ./theia/ ./TCCDMDatum.avsc 127.0.0.1 4712 -v

2. java-consumer

下载工具包ta3-java-consumer.tar.gz并解压。
参考根目录下的README进行安装。
ta3-java-consumer\tc-bbn-kafka目录下新建一个python脚本,如bin2json.py,粘贴如下代码进去,修改其中的bin_path.bin文件的绝对地址,注意一定要是绝对地址,然后运行该脚本等待转换完成即可。

import os
import time
# the path of .bin files
bin_path="/media/njust3001/disk/TC_e5/theia/"
dir_list=os.listdir(bin_path)
# print(len(dir_list))for cur_file in dir_list:# gets the absolute pathpath=os.path.join(bin_path,cur_file)# print(path)command="./json_consumer.sh "+pathos.system(command)time.sleep(10)print("susseful convert "+curfile)

本质上是能够通过./json_consumer.sh [filepath]直接运行的,但是后面的参数不能是文件夹只能是具体文件,所以额外写了脚本。转换出来的json文件默认在ta3-java-consumer\tc-bbn-kafka目录下,该工具包是支持自定义路径的,有需要可以自行研究。

这篇关于DARPA TC-e3/e5数据集bin转json的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661333

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建