DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)

本文主要是介绍DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。

DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的物体。最后,DeepSORT算法使用卡尔曼滤波器来预测物体的位置和速度,并更新跟踪器状态。

除了可以进行目标跟踪计数外,DeepSORT算法还可以用于道路违规检测。例如,该算法可以检测车辆是否违规超速或跨越道路中心线等。此外,DeepSORT算法还可以应用于视频监控、智能交通和自动驾驶等领域。

总之,DeepSORT算法是一种用于目标跟踪的高效算法,它可以用于车辆和行人的跟踪计数,并且可以检测道路违规行为。在未来,该算法将会在各种领域中有广泛的应用价值。

特征提取

此处面对的场景是是交通摄像头下的马路场景,数据格式为视频流或者视频,所以我们要提取视频的第一帧作为背景来进行车道线的标定,运行extra.py文件即可提取第一帧背景图片。

 车道线和斑马线

根据第一步提取的场景背景图片,进行道路信息的标定,并返回道路信息的相关参数。
标定的方式是运行车道线标定文件即可。
先鼠标在背景图片上从左至右依次点击红色的两边的车道线实线,然后鼠标再依次在背景图片点击斑马线绿色框的从左至右四个顶点。这样就可以将斑马线和车道线的位置信息进行提取了,项目目录下会生成如上图标记好了的输出图片如上。

车牌识别


车牌号使用车牌号的识别是从车辆出现在画面的第一帧开始,一直到车辆消失在画面中。我们并不能事先确定在哪一帧对车牌的识别效果最好。因此,我们在车辆出现的第一帧,就将它的id和车牌信息传入字典chepaixinxi保存起来。如果当前帧比之前的识别效果都好(置信度高),我们就用它替换之前的车牌信息。另一方面,为了节省计算资源,只要是该车在某一帧的车牌置信度高于0.9,我们就不再将其传入车牌识别模块,运行LPR.py即可提取车牌信息,提取效果如下图所示

 

import cv2
import numpy as np
import math""" 输入图像归一化 """def stretch(img):max = float(img.max())min = float(img.min())for i in range(img.shape[0]):for j in range(img.shape[1]):img[i, j] = (255 / (max - min)) * img[i, j] - (255 * min) / (max - min)return imgdef dobinaryzation(img):max = float(img.max())min = float(img.min())x = max - ((max - min) / 2)ret, thresholdimg = cv2.threshold(img, x, 255, cv2.THRESH_BINARY)return thresholdimgdef find_retangle(contour):y, x = [], []for p in contour:y.append(p[0][0])x.append(p[0][1])return [min(y), min(x), max(y), max(x)]def locate_license(img, orgimg):img, contours, hierachy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 找到最大的三个区域blocks = []for c in contours:# 找出轮廓的左上和右下点,计算出其面积和长宽比r = find_retangle(c)a = (r[2] - r[0]) * (r[3] - r[1])s = (r[2] - r[0]) / (r[3] - r[1])blocks.append([r, a, s])# 选出面积最大的3个区域blocks = sorted(blocks, key=lambda b: b[2])[-3:]# 使用颜色识别判断出最像车牌的区域maxweight, maxinedx = 0, -1for i in range(len(blocks)):b = orgimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]# RGB 转HSVhsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)# 蓝色车牌范围lower = np.array([100, 50, 50])upper = np.array([140, 255, 255])# 根据阈值构建掩膜mask = cv2.inRange(hsv, lower, upper)# 统计权值w1 = 0for m in mask:w1 += m / 255w2 = 0for w in w1:w2 += w# 选出最大权值的区域if w2 > maxweight:maxindex = imaxweight = w2return blocks[maxindex][0]def find_license(img):'''预处理'''# 压缩图像a = 400 * img.shape[0] / img.shape[1]a = int(a)img = cv2.resize(img, (400, a))cv2.imshow('img',img)cv2.waitKey()# RGB转灰色grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow('grayimg', grayimg)cv2.waitKey()# 灰度拉伸stretchedimg = stretch(grayimg)cv2.imshow('stretchedimg', stretchedimg)cv2.waitKey()# 进行开运算,用来去除噪声r = 16h = w = r * 2 + 1kernel = np.zeros((h, w), dtype=np.uint8)cv2.circle(kernel, (r, r), r, 1, -1)openingimg = cv2.morphologyEx(stretchedimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()strtimg = cv2.absdiff(stretchedimg, openingimg)cv2.imshow('strtimg', strtimg)cv2.waitKey()# 图像二值化binaryimg = dobinaryzation(strtimg)cv2.imshow('binaryimg', binaryimg)cv2.waitKey()# Canny算子进行边缘检测cannyimg = cv2.Canny(binaryimg, binaryimg.shape[0], binaryimg.shape[1])cv2.imshow('cannyimg', cannyimg)cv2.waitKey()'''消除小区域,连通大区域'''# 进行闭运算kernel = np.ones((5, 19), np.uint8)closingimg = cv2.morphologyEx(cannyimg, cv2.MORPH_CLOSE, kernel)cv2.imshow('closingimg', closingimg)cv2.waitKey()# 进行开运算openingimg = cv2.morphologyEx(closingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 再次进行开运算kernel = np.ones((11, 5), np.uint8)openingimg = cv2.morphologyEx(openingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 消除小区域,定位车牌位置rect = locate_license(openingimg, img)return rect, imgif __name__ == '__main__':orgimg = cv2.imread('car3.jpg')rect, img = find_license(orgimg)cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 255, 0), 2)cv2.imshow('img', img)cv2.waitKey()cv2.destroyAllWindows()

车辆越实线、不礼让行人检测

我们将车辆在上一帧的检测位置保存下来。如果车辆在上一帧的位置和在这一帧的位置分别位于车道线实线的两侧,或者落在了实线上,我们就判定车辆非法越实线了。行人在斑马线上时,车辆也在斑马线上 ==>车辆不礼让行人,运行效果图:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩# 填充顶点vertices中间区域if len(image.shape) > 2:channel_count = image.shape[2]ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255# 填充函数cv.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv.bitwise_and(image, mask)return masked_image# 生成Mask掩模vertices = np.array([[(0, imshape[0]), (9 * imshape[1] / 20, 11 * imshape[0] / 18),(11 * imshape[1] / 20, 11 * imshape[0] / 18), (imshape[1], imshape[0])]], dtype=np.int32)masked_edges = region_of_interest(edge_image, vertices)

企鹅耗子:767172261

这篇关于DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661208

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩