ID3算法 决策树学习 Python实现

2024-01-30 14:36

本文主要是介绍ID3算法 决策树学习 Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法流程

输入:约束决策树生长参数(最大深度,节点最小样本数,可选),训练集(特征值离散或连续,标签离散)。
输出:决策树。
过程:每次选择信息增益最大的属性决策分类,直到当前节点样本均为同一类,或者信息增益过小。

信息增益

设样本需分为 K K K 类,当前节点待分类样本中每类样本的个数分别为 n 1 , n 2 , … , n K n_1, n_2, …, n_K n1,n2,,nK,则该节点信息熵为
I ( n 1 , n 2 , … , n K ) = − ∑ i = 1 K n i ∑ j = 1 K n j log ⁡ 2 n i ∑ j = 1 K n j I(n_1, n_2, …, n_K) = -\sum_{i=1}^K \frac{n_i}{\sum_{j=1}^K n_j} \log_2 \frac{n_i}{\sum_{j=1}^K n_j} I(n1,n2,,nK)=i=1Kj=1Knjnilog2j=1Knjni
设属性 A A A v v v 种取值,当前节点样本按属性 A A A 决策分类为 v v v 个子节点,第 i i i 个子节点待分类样本中每类样本的个数分别为 n i 1 , n i 2 , … , n i K n_{i1}, n_{i2}, …, n_{iK} ni1,ni2,,niK,则父节点按属性 A A A 决策分类的类信息熵为
E ( A ) = ∑ i = 1 v ∑ j = 1 K n i j ∑ j = 1 K n j I ( n i 1 , n i 2 , … , n i K ) E(A) = \sum_{i=1}^v \frac{\sum_{j=1}^K n_{ij}}{\sum_{j=1}^K n_j} I(n_{i1}, n_{i2}, …, n_{iK}) E(A)=i=1vj=1Knjj=1KnijI(ni1,ni2,,niK)
由此计算当前节点在属性 A 上的信息增益为
G a i n ( A ) = I ( n 1 , n 2 , … , n K ) − E ( A ) Gain(A) = I(n_1, n_2, …, n_K) - E(A) Gain(A)=I(n1,n2,,nK)E(A)

决策树学习过程中可能出现的问题与解决方法

不相关属性(irrelevant attribute),属性与类分布相独立。此情况下信息增益过小,可以终止决策,将当前节点标签设为最高频类。
不充足属性(inadequate attribute),不同类的样本有完全相同特征。此情况下信息增益为 0 0 0,可以终止决策,将当前节点标签设为最高频类。
未知属性值(unknown value),数据集中某些属性值不确定。可以通过预处理剔除含有未知属性值的样本或属性。
过拟合(overfitting),决策树泛化能力不足。可以约束决策树生长参数。
空分支(empty branch),学习过程中某节点样本数为 0 0 0 v ≥ 3 v≥3 v3 才会发生。可以将当前节点标签设为父节点的最高频类。

参考代码如下(仅能处理离散属性值状态):

import numpy as np
class ID3:def __init__(self, max_depth = 0, min_samples_split = 0):self.max_depth, self.min_samples_split = max_depth, min_samples_splitdef __EI(self, *n):n = np.array([i for i in n if i > 0])if n.shape[0] <= 1:return 0p = n / np.sum(n)return -np.dot(p, np.log2(p))def __Gain(self, A: np.ndarray):return self.__EI(*np.sum(A, axis = 0)) - np.average(np.frompyfunc(self.__EI, A.shape[1], 1)(*A.T), weights = np.sum(A, axis = 1))def fit(self, X: np.ndarray, y):self.DX, (self.Dy, yn) = [np.unique(X[:, i]) for i in range(X.shape[1])], np.unique(y, return_inverse = True)self.Dy: np.ndarrayself.value = []def fitcur(n, h, p = 0):self.value.append(np.bincount(yn[n], minlength = self.Dy.shape[0]))r: np.ndarray = np.unique(y[n])if r.shape[0] == 0: # Empty Branchreturn pelif r.shape[0] == 1:return yn[n[0]]elif self.max_depth > 0 and h >= self.max_depth or n.shape[0] <= self.min_samples_split: # Overfittingreturn np.argmax(np.bincount(yn[n]))else:P = [[n[np.where(X[n, i] == j)[0]] for j in self.DX[i]] for i in range(X.shape[1])]G = [self.__Gain(A) for A in [np.array([[np.where(y[i] == j)[0].shape[0] for j in self.Dy] for i in p]) for p in P]]m = np.argmax(G)if(G[m] < 1e-9): # Inadequate attributereturn np.argmax(np.bincount(yn[n]))return (m,) + tuple(fitcur(i, h + 1, np.argmax(np.bincount(yn[n]))) for i in P[m])self.tree = fitcur(np.arange(X.shape[0]), 0)def predict(self, X):def precur(n, x):return precur(n[1 + np.where(self.DX[n[0]] == x[n[0]])[0][0]], x) if isinstance(n, tuple) else self.Dy[n]return np.array([precur(self.tree, x) for x in X])def visualize(self, header):i = iter(self.value)def visval():v = next(i)print(' (entropy = {}, samples = {}, value = {})'.format(self.__EI(*v), np.sum(v), v), end = '')def viscur(n, h, c):for i in h[:-1]:print('%c   ' % ('│' if i else ' '), end = '')if len(h) > 0:print('%c── ' % ('├' if h[-1] else '└'), end = '')print('[%s] ' % c, end = '')if isinstance(n, tuple):print(header[n[0]], end = '')visval()print()for i in range(len(n) - 1):viscur(n[i + 1], h + [i < len(n) - 2], str(self.DX[n[0]][i]))else:print(self.Dy[n], end = '')visval()print()viscur(self.tree, [], '')

连续属性值的离散化

对于某个连续属性,取训练集中所有属性值的相邻两点中点生成界点集,按每个界点将当前节点样本分为 2 2 2 类,算出界点集中最大信息增益的界点。

在上文代码的基础上加以改动,得到能处理连续属性值状态的代码如下:

import numpy as np
class ID3:def __init__(self, max_depth = 0, min_samples_split = 0):self.max_depth, self.min_samples_split = max_depth, min_samples_splitdef __EI(self, *n):n = np.array([i for i in n if i > 0])if n.shape[0] <= 1:return 0p = n / np.sum(n)return -np.dot(p, np.log2(p))def __Gain(self, A: np.ndarray):return self.__EI(*np.sum(A, axis = 0)) - np.average([self.__EI(*a) for a in A], weights = np.sum(A, axis = 1))def fit(self, X: np.ndarray, y):self.c = np.array([(np.all([isinstance(j, (int, float)) for j in i])) for i in X.T])self.DX, (self.Dy, yn) = [np.unique(X[:, i]) if not self.c[i] else None for i in range(X.shape[1])], np.unique(y, return_inverse = True)self.Dy: np.ndarrayself.value = []def Part(n, a):if self.c[a]:u = np.sort(np.unique(X[n, a]))if(u.shape[0] < 2):return Nonev = np.array([(u[i - 1] + u[i]) / 2 for i in range(1, u.shape[0])])P = [[n[np.where(X[n, a] < i)[0]], n[np.where(X[n, a] >= i)[0]]] for i in v]m = np.argmax([self.__Gain([[np.where(y[i] == j)[0].shape[0] for j in self.Dy] for i in p]) for p in P])return v[m], P[m]else:return None, [n[np.where(X[n, a] == i)[0]] for i in self.DX[a]]def fitcur(n: np.ndarray, h, p = 0):self.value.append(np.bincount(yn[n], minlength = self.Dy.shape[0]))r: np.ndarray = np.unique(y[n])if r.shape[0] == 0: # Empty Branchreturn pelif r.shape[0] == 1:return yn[n[0]]elif self.max_depth > 0 and h >= self.max_depth or n.shape[0] <= self.min_samples_split: # Overfittingreturn np.argmax(np.bincount(yn[n]))else:P = [Part(n, i) for i in range(X.shape[1])]G = [self.__Gain([[np.where(y[i] == j)[0].shape[0] for j in self.Dy] for i in p[1]]) if p != None else 0 for p in P]m = np.argmax(G)if(G[m] < 1e-9): # Inadequate attributereturn np.argmax(np.bincount(yn[n]))return ((m, P[m][0]) if self.c[m] else (m,)) + tuple(fitcur(i, h + 1, np.argmax(np.bincount(yn[n]))) for i in P[m][1])self.tree = fitcur(np.arange(X.shape[0]), 0)def predict(self, X):def precur(n, x):return precur(n[(2 if x[n[0]] < n[1] else 3) if self.c[n[0]] else (1 + np.where(self.DX[n[0]] == x[n[0]])[0][0])], x) if isinstance(n, tuple) else self.Dy[n]return np.array([precur(self.tree, x) for x in X])def visualize(self, header):i = iter(self.value)def visval():v = next(i)print(' (entropy = {}, samples = {}, value = {})'.format(self.__EI(*v), np.sum(v), v), end = '')def viscur(n, h, c):for i in h[:-1]:print('%c   ' % ('│' if i else ' '), end = '')if len(h) > 0:print('%c── ' % ('├' if h[-1] else '└'), end = '')print('[%s] ' % c, end = '')if isinstance(n, tuple):print(header[n[0]], end = '')visval()print()if self.c[n[0]]:for i in range(2):viscur(n[2 + i], h + [i < 1], ('< ', '>= ')[i] + str(n[1]))else:for i in range(len(n) - 1):viscur(n[1 + i], h + [i < len(n) - 2], str(self.DX[n[0]][i]))else:print(self.Dy[n], end = '')visval()print()viscur(self.tree, [], '')

实验测试

实验使用数据集如下:
Play tennis 数据集(来源:kaggle):离散属性
Mushroom classification 数据集(来源:kaggle):离散属性
Carsdata 数据集(来源:kaggle):连续属性
Iris 数据集(来源:sklearn.datasets):连续属性

其中 play_tennis.csv 内容如下:

dayoutlooktemphumiditywindplay
D1SunnyHotHighWeakNo
D2SunnyHotHighStrongNo
D3OvercastHotHighWeakYes
D4RainMildHighWeakYes
D5RainCoolNormalWeakYes
D6RainCoolNormalStrongNo
D7OvercastCoolNormalStrongYes
D8SunnyMildHighWeakNo
D9SunnyCoolNormalWeakYes
D10RainMildNormalWeakYes
D11SunnyMildNormalStrongYes
D12OvercastMildHighStrongYes
D13OvercastHotNormalWeakYes
D14RainMildHighStrongNo

Play tennis 数据集上的测试

默认属性二分类测试,代码如下:

import pandas as pd
class Datasets:def __init__(self, fn):self.df = pd.read_csv('Datasets\\%s' % fn).map(lambda x: x.strip() if isinstance(x, str) else x)self.df.rename(columns = lambda x: x.strip(), inplace = True)def getData(self, DX, Dy, drop = False):dfn = self.df.loc[~self.df.eq('').any(axis = 1)].apply(pd.to_numeric, errors = 'ignore') if drop else self.dfreturn dfn[DX].to_numpy(dtype = np.object_), dfn[Dy].to_numpy(dtype = np.object_)# play_tennis.csv
a = ['outlook', 'temp', 'humidity', 'wind']
X, y = Datasets('play_tennis.csv').getData(a, 'play')
dt11 = ID3()
dt11.fit(X, y)
dt11.visualize(a)
print()

结果如下:

outlook (entropy = 0.9402859586706311, samples = 14, value = [5 9])
├── [Overcast] Yes (entropy = 0, samples = 4, value = [0 4])
├── [Rain] wind (entropy = 0.9709505944546686, samples = 5, value = [2 3])
│   ├── [Strong] No (entropy = 0, samples = 2, value = [2 0])
│   └── [Weak] Yes (entropy = 0, samples = 3, value = [0 3])
└── [Sunny] humidity (entropy = 0.9709505944546686, samples = 5, value = [3 2])├── [High] No (entropy = 0, samples = 3, value = [3 0])└── [Normal] Yes (entropy = 0, samples = 2, value = [0 2])

不充足属性测试

更换属性三分类,不充足属性测试,代码如下:

# play_tennis.csv for inadequate attribute test and class > 2
a = ['temp', 'humidity', 'wind', 'play']
X, y = Datasets('play_tennis.csv').getData(a, 'outlook')
dt12 = ID3(10)
dt12.fit(X, y)
dt12.visualize(a)
print(dt12.predict([['Cool', 'Normal', 'Weak', 'Yes']]))
print()

结果如下:

play (entropy = 1.5774062828523454, samples = 14, value = [4 5 5])
├── [No] temp (entropy = 0.9709505944546686, samples = 5, value = [0 2 3])
│   ├── [Cool] Rain (entropy = 0, samples = 1, value = [0 1 0])
│   ├── [Hot] Sunny (entropy = 0, samples = 2, value = [0 0 2])
│   └── [Mild] wind (entropy = 1.0, samples = 2, value = [0 1 1])
│       ├── [Strong] Rain (entropy = 0, samples = 1, value = [0 1 0])
│       └── [Weak] Sunny (entropy = 0, samples = 1, value = [0 0 1])
└── [Yes] temp (entropy = 1.5304930567574826, samples = 9, value = [4 3 2])├── [Cool] wind (entropy = 1.584962500721156, samples = 3, value = [1 1 1])│   ├── [Strong] Overcast (entropy = 0, samples = 1, value = [1 0 0])│   └── [Weak] Rain (entropy = 1.0, samples = 2, value = [0 1 1])├── [Hot] Overcast (entropy = 0, samples = 2, value = [2 0 0])└── [Mild] wind (entropy = 1.5, samples = 4, value = [1 2 1])├── [Strong] humidity (entropy = 1.0, samples = 2, value = [1 0 1])│   ├── [High] Overcast (entropy = 0, samples = 1, value = [1 0 0])│   └── [Normal] Sunny (entropy = 0, samples = 1, value = [0 0 1])└── [Weak] Rain (entropy = 0, samples = 2, value = [0 2 0])
['Rain']

空分支测试

默认属性二分类,修改部分数据,空分支测试,代码如下:

# play_tennis.csv modified to generate empty branch
a = ['outlook', 'temp', 'humidity', 'wind']
X, y = Datasets('play_tennis.csv').getData(a, 'play')
X[2, 2], X[13, 2] = 'Low', 'Low'
dt13 = ID3()
dt13.fit(X, y)
dt13.visualize(a)
print(dt13.predict([['Sunny', 'Hot', 'Low', 'Weak']]))
print()

结果如下:

outlook (entropy = 0.9402859586706311, samples = 14, value = [5 9])
├── [Overcast] Yes (entropy = 0, samples = 4, value = [0 4])
├── [Rain] wind (entropy = 0.9709505944546686, samples = 5, value = [2 3])
│   ├── [Strong] No (entropy = 0, samples = 2, value = [2 0])
│   └── [Weak] Yes (entropy = 0, samples = 3, value = [0 3])
└── [Sunny] humidity (entropy = 0.9709505944546686, samples = 5, value = [3 2])├── [High] No (entropy = 0, samples = 3, value = [3 0])├── [Low] No (entropy = 0, samples = 0, value = [0 0])└── [Normal] Yes (entropy = 0, samples = 2, value = [0 2])
['No']

Mushroom classification 数据集上的测试

默认属性二分类,忽略有未知值的属性,划分训练集和测试集,代码如下:

# mushrooms.csv ignoring attribute 'stalk-root' with unknown value
a = ['cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor', 'gill-attachment', 'gill-spacing', 'gill-size','gill-color', 'stalk-shape', 'stalk-surface-above-ring', 'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring', 'veil-type','veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat']
X, y = Datasets('mushrooms.csv').getData(a, 'class')
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 20231218)
dt21 = ID3()
dt21.fit(X_train, y_train)
dt21.visualize(a)
print()
y_pred = dt21.predict(X_test)
print(classification_report(y_test, y_pred))

结果如下:

odor (entropy = 0.9990161113058208, samples = 6093, value = [3159 2934])
├── [a] e (entropy = 0, samples = 298, value = [298   0])
├── [c] p (entropy = 0, samples = 138, value = [  0 138])
├── [f] p (entropy = 0, samples = 1636, value = [   0 1636])
├── [l] e (entropy = 0, samples = 297, value = [297   0])
├── [m] p (entropy = 0, samples = 26, value = [ 0 26])
├── [n] spore-print-color (entropy = 0.19751069442516636, samples = 2645, value = [2564   81])
│   ├── [b] e (entropy = 0, samples = 32, value = [32  0])
│   ├── [h] e (entropy = 0, samples = 35, value = [35  0])
│   ├── [k] e (entropy = 0, samples = 974, value = [974   0])
│   ├── [n] e (entropy = 0, samples = 1013, value = [1013    0])
│   ├── [o] e (entropy = 0, samples = 33, value = [33  0])
│   ├── [r] p (entropy = 0, samples = 50, value = [ 0 50])
│   ├── [u] e (entropy = 0, samples = 0, value = [0 0])
│   ├── [w] habitat (entropy = 0.34905151737109524, samples = 473, value = [442  31])
│   │   ├── [d] gill-size (entropy = 0.7062740891876007, samples = 26, value = [ 5 21])
│   │   │   ├── [b] e (entropy = 0, samples = 5, value = [5 0])
│   │   │   └── [n] p (entropy = 0, samples = 21, value = [ 0 21])
│   │   ├── [g] e (entropy = 0, samples = 222, value = [222   0])
│   │   ├── [l] cap-color (entropy = 0.7553754125614287, samples = 46, value = [36 10])
│   │   │   ├── [b] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [c] e (entropy = 0, samples = 20, value = [20  0])
│   │   │   ├── [e] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [g] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [n] e (entropy = 0, samples = 16, value = [16  0])
│   │   │   ├── [p] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [r] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [u] e (entropy = 0, samples = 0, value = [0 0])
│   │   │   ├── [w] p (entropy = 0, samples = 7, value = [0 7])
│   │   │   └── [y] p (entropy = 0, samples = 3, value = [0 3])
│   │   ├── [m] e (entropy = 0, samples = 0, value = [0 0])
│   │   ├── [p] e (entropy = 0, samples = 35, value = [35  0])
│   │   ├── [u] e (entropy = 0, samples = 0, value = [0 0])
│   │   └── [w] e (entropy = 0, samples = 144, value = [144   0])
│   └── [y] e (entropy = 0, samples = 35, value = [35  0])
├── [p] p (entropy = 0, samples = 187, value = [  0 187])
├── [s] p (entropy = 0, samples = 433, value = [  0 433])
└── [y] p (entropy = 0, samples = 433, value = [  0 433])precision    recall  f1-score   supporte       1.00      1.00      1.00      1049p       1.00      1.00      1.00       982accuracy                           1.00      2031macro avg       1.00      1.00      1.00      2031
weighted avg       1.00      1.00      1.00      2031

Carsdata 数据集上的测试

默认属性三分类,忽略有未知值的样本,划分训练集和测试集,约束决策树生长最大深度为 5,节点最小样本数为 3,代码如下:

# cars.csv ignoring samples with unknown value
a = ['mpg', 'cylinders', 'cubicinches', 'hp', 'weightlbs', 'time-to-60', 'year']
X, y = Datasets('cars.csv').getData(a, 'brand', True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 20231218)
dt31 = ID3(5, 3)
dt31.fit(X_train, y_train)
dt31.visualize(a)
print()
y_pred = dt31.predict(X_test)
print(classification_report(y_test, y_pred))

结果如下:

cubicinches (entropy = 1.3101461692119258, samples = 192, value = [ 37  33 122])
├── [< 191.0] year (entropy = 1.5833913647120852, samples = 105, value = [37 33 35])
│   ├── [< 1981.5] cubicinches (entropy = 1.5558899087683136, samples = 87, value = [37 27 23])
│   │   ├── [< 121.5] cubicinches (entropy = 1.4119058166561587, samples = 62, value = [31 23  8])
│   │   │   ├── [< 114.0] cubicinches (entropy = 1.4844331941390079, samples = 47, value = [18 21  8])
│   │   │   │   ├── [< 87.0] Japan. (entropy = 0.5435644431995964, samples = 8, value = [1 7 0])
│   │   │   │   └── [>= 87.0] Europe. (entropy = 1.521560239117063, samples = 39, value = [17 14  8])
│   │   │   └── [>= 114.0] weightlbs (entropy = 0.5665095065529053, samples = 15, value = [13  2  0])
│   │   │       ├── [< 2571.0] Europe. (entropy = 0.9709505944546686, samples = 5, value = [3 2 0])
│   │   │       └── [>= 2571.0] Europe. (entropy = 0, samples = 10, value = [10  0  0])
│   │   └── [>= 121.5] weightlbs (entropy = 1.3593308322365363, samples = 25, value = [ 6  4 15])
│   │       ├── [< 3076.5] hp (entropy = 0.9917601481809735, samples = 20, value = [ 1  4 15])
│   │       │   ├── [< 92.5] US. (entropy = 0, samples = 11, value = [ 0  0 11])
│   │       │   └── [>= 92.5] Japan. (entropy = 1.3921472236645345, samples = 9, value = [1 4 4])
│   │       └── [>= 3076.5] Europe. (entropy = 0, samples = 5, value = [5 0 0])
│   └── [>= 1981.5] mpg (entropy = 0.9182958340544896, samples = 18, value = [ 0  6 12])
│       ├── [< 31.3] US. (entropy = 0, samples = 9, value = [0 0 9])
│       └── [>= 31.3] mpg (entropy = 0.9182958340544896, samples = 9, value = [0 6 3])
│           ├── [< 33.2] Japan. (entropy = 0, samples = 4, value = [0 4 0])
│           └── [>= 33.2] time-to-60 (entropy = 0.9709505944546686, samples = 5, value = [0 2 3])
│               ├── [< 16.5] US. (entropy = 0, samples = 2, value = [0 0 2])
│               └── [>= 16.5] Japan. (entropy = 0.9182958340544896, samples = 3, value = [0 2 1])
└── [>= 191.0] US. (entropy = 0, samples = 87, value = [ 0  0 87])precision    recall  f1-score   supportEurope.       0.50      0.80      0.62        10Japan.       0.83      0.56      0.67        18US.       0.94      0.94      0.94        36accuracy                           0.81        64macro avg       0.76      0.77      0.74        64
weighted avg       0.84      0.81      0.81        64

离散属性和连续属性混合分类测试

根据上文决策树节点划分结果对其中某个属性进行预离散化,相同方式划分训练集和测试集,约束决策树生长参数不变,离散属性和连续属性混合分类测试,代码如下:

# cars.csv with attribute 'cubicinches' discretized 
def find(a, n):def findcur(r):return findcur(r + 1) if r < len(a) and a[r] < n else rreturn findcur(0)
X[:, 2] = np.array([('a', 'b', 'c')[find([121.5, 191.0], i)] for i in X[:, 2]])
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 20231218)
dt32 = ID3(5, 3)
dt32.fit(X_train, y_train)
dt32.visualize(a)
y_pred = dt32.predict(X_test)
print(classification_report(y_test, y_pred))

结果如下:

cubicinches (entropy = 1.3101461692119258, samples = 192, value = [ 37  33 122])
├── [a] year (entropy = 1.5231103605784926, samples = 74, value = [31 28 15])
│   ├── [< 1981.5] weightlbs (entropy = 1.4119058166561587, samples = 62, value = [31 23  8])
│   │   ├── [< 2571.0] weightlbs (entropy = 1.4729350396193688, samples = 50, value = [20 22  8])
│   │   │   ├── [< 2271.5] mpg (entropy = 1.5038892873131435, samples = 42, value = [19 15  8])
│   │   │   │   ├── [< 30.25] Europe. (entropy = 1.2640886121123147, samples = 23, value = [15  5  3])
│   │   │   │   └── [>= 30.25] Japan. (entropy = 1.4674579648482995, samples = 19, value = [ 4 10  5])
│   │   │   └── [>= 2271.5] mpg (entropy = 0.5435644431995964, samples = 8, value = [1 7 0])
│   │   │       ├── [< 37.9] Japan. (entropy = 0, samples = 7, value = [0 7 0])
│   │   │       └── [>= 37.9] Europe. (entropy = 0, samples = 1, value = [1 0 0])
│   │   └── [>= 2571.0] cylinders (entropy = 0.41381685030363374, samples = 12, value = [11  1  0])
│   │       ├── [< 3.5] Japan. (entropy = 0, samples = 1, value = [0 1 0])
│   │       └── [>= 3.5] Europe. (entropy = 0, samples = 11, value = [11  0  0])
│   └── [>= 1981.5] mpg (entropy = 0.9798687566511528, samples = 12, value = [0 5 7])
│       ├── [< 31.3] US. (entropy = 0, samples = 4, value = [0 0 4])
│       └── [>= 31.3] mpg (entropy = 0.954434002924965, samples = 8, value = [0 5 3])
│           ├── [< 33.2] Japan. (entropy = 0, samples = 3, value = [0 3 0])
│           └── [>= 33.2] time-to-60 (entropy = 0.9709505944546686, samples = 5, value = [0 2 3])
│               ├── [< 16.5] US. (entropy = 0, samples = 2, value = [0 0 2])
│               └── [>= 16.5] Japan. (entropy = 0.9182958340544896, samples = 3, value = [0 2 1])
├── [b] weightlbs (entropy = 1.2910357498542626, samples = 31, value = [ 6  5 20])
│   ├── [< 3076.5] hp (entropy = 0.9293550115186283, samples = 26, value = [ 1  5 20])
│   │   ├── [< 93.5] US. (entropy = 0, samples = 16, value = [ 0  0 16])
│   │   └── [>= 93.5] time-to-60 (entropy = 1.360964047443681, samples = 10, value = [1 5 4])
│   │       ├── [< 15.5] cylinders (entropy = 0.954434002924965, samples = 8, value = [0 5 3])
│   │       │   ├── [< 5.0] Japan. (entropy = 0, samples = 3, value = [0 3 0])
│   │       │   └── [>= 5.0] US. (entropy = 0.9709505944546686, samples = 5, value = [0 2 3])
│   │       └── [>= 15.5] Europe. (entropy = 1.0, samples = 2, value = [1 0 1])
│   └── [>= 3076.5] Europe. (entropy = 0, samples = 5, value = [5 0 0])
└── [c] US. (entropy = 0, samples = 87, value = [ 0  0 87])precision    recall  f1-score   supportEurope.       0.57      0.40      0.47        10Japan.       0.65      0.72      0.68        18US.       0.92      0.94      0.93        36accuracy                           0.80        64macro avg       0.71      0.69      0.70        64
weighted avg       0.79      0.80      0.79        64

Iris 数据集上的测试

默认属性三分类,划分训练集和测试集,限制决策树生长最大深度为 3,代码如下:

# iris dataset
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 20231218)
dt41 = ID3(3)
dt41.fit(X_train, y_train)
dt41.visualize(iris['feature_names'])
print()
y_pred = dt41.predict(X_test)
print(classification_report(y_test, y_pred))

结果如下:

petal length (cm) (entropy = 1.5807197138422102, samples = 112, value = [34 41 37])
├── [< 2.45] 0 (entropy = 0, samples = 34, value = [34  0  0])
└── [>= 2.45] petal width (cm) (entropy = 0.9981021327390103, samples = 78, value = [ 0 41 37])├── [< 1.75] petal length (cm) (entropy = 0.4394969869215134, samples = 44, value = [ 0 40  4])│   ├── [< 4.95] 1 (entropy = 0.17203694935311378, samples = 39, value = [ 0 38  1])│   └── [>= 4.95] 2 (entropy = 0.9709505944546686, samples = 5, value = [0 2 3])└── [>= 1.75] petal length (cm) (entropy = 0.19143325481419343, samples = 34, value = [ 0  1 33])├── [< 4.85] 2 (entropy = 0.9182958340544896, samples = 3, value = [0 1 2])└── [>= 4.85] 2 (entropy = 0, samples = 31, value = [ 0  0 31])precision    recall  f1-score   support0       1.00      1.00      1.00        161       1.00      1.00      1.00         92       1.00      1.00      1.00        13accuracy                           1.00        38macro avg       1.00      1.00      1.00        38
weighted avg       1.00      1.00      1.00        38

这篇关于ID3算法 决策树学习 Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660550

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/