粒子群算法求解港口泊位调度问题(MATLAB代码)

2024-01-30 11:52

本文主要是介绍粒子群算法求解港口泊位调度问题(MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群的行为来寻找最优解。在泊位调度问题中,目标是最小化所有船只在港时间的总和,而PSO算法可以帮助我们找到一个较优的调度方案。

泊位调度问题是指在有限数量的泊位资源下,安排船只的到港和离港时间,以最小化船只在港等待的时间。该问题存在多个约束条件,如泊位容量、船只到港和离港时间窗口等。

PSO算法的核心思想是通过模拟粒子在解空间中的移动来搜索最优解。每个粒子代表一个解,并根据自身的历史最佳解和群体的历史最佳解进行调整。粒子根据自身和邻域最优解的信息更新速度和位置,以逐渐靠近最优解。

在泊位调度问题中,每个粒子的位置可以表示为一个泊位调度方案,其中每个船只被分配到一个特定的泊位,并确定其到港和离港时间。粒子的速度和位置更新规则可以根据目标函数来定义,以使船只在港时间的总和最小化。

PSO算法的优点在于简单且易于实现,能够在高维解空间中找到较优解。然而,对于泊位调度问题这样的复杂问题,PSO算法可能会陷入局部最优解。为了克服这个问题,可以采用多种改进方法,如引入局部搜索机制或组合其他优化算法。

总结而言,粒子群算法是一种有效的优化算法,适用于解决泊位调度问题。通过调整粒子的速度和位置,并结合合适的目标函数,可以找到一个较优的泊位调度方案,以最小化船只在港时间的总和。然而,对于复杂的问题,仍然需要进一步的研究和改进。

流程如下:

数据: 

停泊时间:

船舶泊位

1#

2#

3#

4#

5#

6#

船1

3

3

3.290323

3.290323

3.290323

3.290323

船2

3.29

3.29

3.608387

3.608387

3.608387

3.608387

船3

3.35

3.35

3.674194

3.674194

3.674194

3.674194

船4

5

5

5.483871

5.483871

5.483871

5.483871

船5

1.94

1.94

2.127742

2.127742

2.127742

2.127742

船6

1.45

1.45

1.590323

1.590323

1.590323

1.590323

船7

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船8

4.61

4.61

5.056129

5.056129

5.056129

5.056129

船9

5.06

5.06

5.549677

5.549677

5.549677

5.549677

船10

7.29

7.29

7.995484

7.995484

7.995484

7.995484

船11

2.68

2.68

2.939355

2.939355

2.939355

2.939355

船12

5.74

5.74

6.295484

6.295484

6.295484

6.295484

船13

0.65

0.65

0.712903

0.712903

0.712903

0.712903

船14

1.26

1.26

1.381935

1.381935

1.381935

1.381935

船15

0.81

0.81

0.888387

0.888387

0.888387

0.888387

船16

1.58

1.58

1.732903

1.732903

1.732903

1.732903

船17

0.77

0.77

0.844516

0.844516

0.844516

0.844516

船18

1

1

1.096774

1.096774

1.096774

1.096774

船19

3.1

3.1

3.4

3.4

3.4

3.4

船20

0.71

0.71

0.77871

0.77871

0.77871

0.77871

船21

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船22

3.23

3.23

3.542581

3.542581

3.542581

3.542581

到港时间

到港时间

装卸量

0:00

93

3:00

102

3:20

104

3:20

155.25

6:00

60

6:00

45

6:20

30

8:00

143

8:00

157

9:00

226

10:00

83

10:30

178

11:00

20

12:00

39

12:00

25

14:40

49

14:40

24

15:00

31

15:00

96

18:50

22

21:10

30

22:00

100

装卸速度

装卸速度

泊位1

31

泊位2

31

泊位3

34

泊位4

35

泊位5

36

泊位6

37

程序结果:

粒子群算法优化得到最优成本

Valuebest =

          70.7209677419355

粒子群算法优化得到最优粒子

psobest =

  1 至 6 列

                        -1        -0.276376816044633        0.0110834051789061        -0.588322236509362        -0.871896419169566                         1

  7 至 12 列

         0.882043641594225         0.394648902367656         0.649790379151507                        -1       -0.0590250701437167                        -1

  13 至 18 列

                         1                         1         0.941078162307071                         1         0.925858029802935        -0.755714050637173

  19 至 24 列

         0.642324983266078                         1                         1                         1          6.33758011393659          5.85939735126611

  25 至 30 列

                      6.99          2.49649225428723          4.78659200827198                      6.99                      6.99          5.21051862147312

  31 至 36 列

          4.23951824644256                         1          2.42088917195685          3.73458639406582                      6.99                      6.99

  37 至 42 列

          2.24808981777205          5.21345040727043          4.55442530362547          1.11174406517414                         1                         1

  43 至 44 列

          1.69713330740672          6.04705817521954

y =

          70.7209677419355

G =

                         1                         6                         0          3.29032258064516

                        10                         1                         9                     16.29

                        12                         3                      10.5          16.7954838709677

                         5                         4                         6          8.12774193548387

                        18                         1                     16.29                     17.29

                         4                         2          3.33333333333333          8.33333333333333

                         2                         5                         3          6.60838709677419

                        11                         2                        10                     12.68

                         3                         6          3.33333333333333          7.00752688172043

                         8                         5                         8          13.0561290322581

                        19                         1                     17.29                     20.39

                         9                         4          8.12774193548387          13.6774193548387

                         7                         6          7.00752688172043          8.07139784946237

                        17                         4          14.6666666666667          15.5111827956989

                        15                         2                     12.68                     13.49

                         6                         6          8.07139784946237          9.66172043010753

                        13                         6                        11          11.7129032258064

                        14                         6                        12           13.381935483871

                        16                         5          14.6666666666667          16.3995698924731

                        20                         1                     20.39                      21.1

                        21                         1          21.1666666666667          22.1366666666667

                        22                         6                        22          25.5425806451613

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

S =

     1    10    12     5    18     4     2    11     3     8    19     9     7    17    15     6    13    14    16    20    21    22

T =

     6     5     6     2     4     6     6     5     4     1     2     3     6     6     2     5     4     1     1     1     1     6

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

>>

这篇关于粒子群算法求解港口泊位调度问题(MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660152

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java