Android MTE技术详解

2024-01-30 10:44
文章标签 android 技术 详解 mte

本文主要是介绍Android MTE技术详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.MTE概念

        MTE(内存标记扩展)是ARM v8.5-A新增的一项缓解内存安全的机制。在Android Linux现有的安全机制中,类似的机制有ASAN、HWSAN。但两者因为性能开销代价昂,不适用于广泛部署(仅调试使用)。MTE当前带来了一种高性能、可扩展的硬件解决方案,可降低以不安全语言编写的代码中可能存在的内存安全违规风险。

注:MTE不仅可用在研发自测、内存问题调试,也可以用于Fuzz。

2.MTE支持条件

ARM解释: v8.5及以上

Qcom平台解释:ARM v9(MSM8450)以上

Android解释:Android对MTE的支持将在2021年/2022年初发布带有MTE的芯片时完成。截至于2023年底,最新的旗舰设备(Pixel、OPPO)开发者选项中已具备MTE功能。

3.MTE的开关

        内核层CONFIG_ARM64_MTE=y时开启,此Kconfig由平台根据环境自行控制,无需工程师手动开关。依赖情况如下:

1687config ARM64_MTE1688 bool "Memory Tagging Extension support"1689 default y1690 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI1691 depends on AS_HAS_ARMV8_51692 # Required for tag checking in the uaccess routines1693 depends on ARM64_PAN1694 depends on AS_HAS_LSE_ATOMICS1695 select ARCH_USES_HIGH_VMA_FLAGS1696 help

        Google Play中也提供了APP(Sanitizer Test APP[外网,需要科学上网])可用于测试MTE,例如:

4.MTE检测目标

MTE认为内存安全违规主要分2种:空间安全、时间安全。

  • 空间安全:

对象在真实边界之外被访问,例如溢出、越界等。可被利用来改变函数指针、保存寄存器等目标地址。

  • 时间安全:

在对象引用的内存释放、过期后使用。例如UAF等,攻击者可以放置一个新的恶意对象来代替预期目标。

下图是两类内存违规的代码表视图:

5.MTE的检测原理

  • 总体思路

        MTE实现了对内存的锁和密钥的验证关系,通过在指针上增加密钥,在内存中加入锁。在指针访问内存时,密钥与锁进行验证。如果匹配,则允许内存访问;否则访问会被记录、拦截。通过这种方式来检测、捕捉内存安全问题。整体逻辑如下图:

  • 技术实现

        ARM64 架构使用64位指针来寻址内存。其中通常有48~52位被硬件实际使用(如果由开启large-address-space,则是52位)。所以理论上有12-16位是预留的。ARM架构一直有“TOP BYTE IGNORE”高字节忽略的功能,允许软件在虚拟地址的最高字节中存储任意数据,但直到MTE前,这些位依然是没有使用。

        MTE允许在虚拟地址的59-56位(即最上层字节的低4位)存储一个key作为密钥。也会将这个密钥与一个或多个16字节的内存范围关联(单独存储作为“锁”)。当一个指针简介访问此内存区域时,存储在指针中的密钥会与指针引用内存的关联密钥进行校验。

  • 密钥来源

        密钥可以由应用程序管理(keymaster)产生,也可以由CPU随机生成。

6.MTE的实际效果

        以2020年修复libjpeg-trubo库漏洞CVE-2020-13790为例。此漏洞是JPEG图像编解码器,在加载格式错误的img文件时导致的堆缓冲区溢出。以下是MTE开启时,漏洞触发的情景:

可以看到,在漏洞复现时,MTE轻松的捕获到,进程会因为分段错误导致中止。故障的存储会通过logcat打印。从图中可以看到:

  • 奔溃的原因:MTE
  • 崩溃的类型:Buffer Overflow
  • 堆的大小以及溢出的大小:104 bytes right of a 16151-byte
  • 问题地址:pc指针(00000056d2240ddc)
  • 进程id:pid=187,tid=187
  • CPU寄存器信息
  • 堆栈的回溯信息

通过addr2line解析pc指针,可以找到问题出现的地址:

7.MTE的处理措施

        当PROT_MTE(相关特性:页表允许MTE分配标签)已开启,并且检测出异常时,有三种不同的选项:

  • Ignore模式(PR_MTE_TCF_NONE):这是默认模式。CPU和内核将忽略MTE检测错误;如果未设置,也默认此选项。
  • 同步模式(PR_MTE_TCF_SYNC):内核引发SIGSEGV同步,并且引发SEGV_MTESERR和si_code=fauly-address。并且内存访问会被拦截,如果SIGSEGV被阻塞或忽略,则包含的进程将通过coredump中止。
  • 异步模式(PR_MTE_TCF_ASYNC):在一个或多个线程检测错误后内核引发SIGSEGV,并设置SEGV_MTAERR和si_code=0;

8.MTE的性能开销

以上是官方给出的性能开销结论:

同步模式:能够识别精确指令和地址,但对性能开销较大;

异步模式:成本更低,再测试工作负载和基准测试中,性能开销估计为:1%~2%,但异步检测提供是失败信息可能不太准确,但它可以提供一些缓解错误信息并用于分析,以便缩小排查范围

9.上手实效

        据2023年8月,Google Project Zero发布的一篇博文《Fitst handset with MTE on market》呈现,博主在Pixel 8上开启了MTE,正常日常使用中未发现任何异常,也没有感受到性能受到影响。

        作为世界顶级安全团队的Zero,自然也编写了一个具备OOB的Poc进行测试,源码如下:

extern "C" JNIEXPORT jstring JNICALLJava_com_example_mtetestapplication_MainActivity_stringFromJNI(JNIEnv* env,jobject /* this */) {char* ptr = strdup("test string");free(ptr);// Use-after-free when ptr is accessed below.return env->NewStringUTF(ptr);}

测试的结果如下(视频请参考原始地址),以下仅为logcat打印,可以明显看到崩溃原因是testapplication程序发生了UAF。

EBUG   : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***DEBUG   : Build fingerprint: 'google/shiba/shiba:14/UD1A.230803.041/10808477:user/release-keys'DEBUG   : Revision: 'MP1.0'DEBUG   : ABI: 'arm64'DEBUG   : Timestamp: 2023-10-24 16:56:32.092532886+0200DEBUG   : Process uptime: 2sDEBUG   : Cmdline: com.example.mtetestapplicationDEBUG   : pid: 24147, tid: 24147, name: testapplication  >>> com.example.mtetestapplication <<<DEBUG   : uid: 10292DEBUG   : tagged_addr_ctrl: 000000000007fff3 (PR_TAGGED_ADDR_ENABLE, PR_MTE_TCF_SYNC, mask 0xfffe)DEBUG   : pac_enabled_keys: 000000000000000f (PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY, PR_PAC_APDBKEY)DEBUG   : signal 11 (SIGSEGV), code 9 (SEGV_MTESERR), fault addr 0x0b000072afa9f790DEBUG   :     x0  0000000000000001  x1  0000007fe384c2e0  x2  0000000000000075  x3  00000072aae969acDEBUG   :     x4  0000007fe384c308  x5  0000000000000004  x6  7274732074736574  x7  00676e6972747320DEBUG   :     x8  0000000000000020  x9  00000072ab1867e0  x10 000000000000050c  x11 00000072aaed0af4DEBUG   :     x12 00000072aaed0ca8  x13 31106e3dee7fb177  x14 ffffffffffffffff  x15 00000000ebad6a89DEBUG   :     x16 0000000000000001  x17 000000722ff047b8  x18 00000075740fe000  x19 0000007fe384c2d0DEBUG   :     x20 0000007fe384c308  x21 00000072aae969ac  x22 0000007fe384c2e0  x23 070000741fa897b0DEBUG   :     x24 0b000072afa9f790  x25 00000072aaed0c18  x26 0000000000000001  x27 000000754a5fae40DEBUG   :     x28 0000007573c00000  x29 0000007fe384c260DEBUG   :     lr  00000072ab35e7ac  sp  0000007fe384be30  pc  00000072ab1867ec  pst 0000000080001000DEBUG   : 98 total framesDEBUG   : backtrace:DEBUG   :       #00 pc 00000000003867ec  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::ScopedCheck::Check(art::ScopedObjectAccess&, bool, char const*, art::(anonymous namespace)::JniValueType*) (.__uniq.99033978352804627313491551960229047428)+1636) (BuildId: a5fcf27f4a71b07dff05c648ad58e3cd)DEBUG   :       #01 pc 000000000055e7a8  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::NewStringUTF(_JNIEnv*, char const*) (.__uniq.99033978352804627313491551960229047428.llvm.6178811259984417487)+160) (BuildId: a5fcf27f4a71b07dff05c648ad58e3cd)DEBUG   :       #02 pc 00000000000017dc  /data/app/~~lgGoAt3gB6oojf3IWXi-KQ==/com.example.mtetestapplication-k4Yl4oMx9PEbfuvTEkjqFg==/base.apk!libmtetestapplication.so (offset 0x1000) (_JNIEnv::NewStringUTF(char const*)+36) (BuildId: f60a9970a8a46ff7949a5c8e41d0ece51e47d82c)...DEBUG   : Note: multiple potential causes for this crash were detected, listing them in decreasing order of likelihood.DEBUG   : Cause: [MTE]: Use After Free, 0 bytes into a 12-byte allocation at 0x72afa9f790DEBUG   : deallocated by thread 24147:DEBUG   :       #00 pc 000000000005e800  /apex/com.android.runtime/lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig, &(scudo_malloc_postinit)>::quarantineOrDeallocateChunk(scudo::Options, void*, scudo::Chunk::UnpackedHeader*, unsigned long)+496) (BuildId: a017f07431ff6692304a0cae225962fb)DEBUG   :       #01 pc 0000000000057ba4  /apex/com.android.runtime/lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig, &(scudo_malloc_postinit)>::deallocate(void*, scudo::Chunk::Origin, unsigned long, unsigned long)+212) (BuildId: a017f07431ff6692304a0cae225962fb)DEBUG   :       #02 pc 000000000000179c  /data/app/~~lgGoAt3gB6oojf3IWXi-KQ==/com.example.mtetestapplication-k4Yl4oMx9PEbfuvTEkjqFg==/base.apk!libmtetestapplication.so (offset 0x1000) (Java_com_example_mtetestapplication_MainActivity_stringFromJNI+40) (BuildId: f60a9970a8a46ff7949a5c8e41d0ece51e47d82c)

  10.结论

        从目前看来,启用MTE在性能、续航上的削弱并不明显,但在安全上的提升十分显著。是这些年来继CFI后最重要的商用安全特性(小编自己评的,如果不准确,请不要喷我)。许多0-click的攻击面都会涉及大量C/C++的安全问题。当前MTE也不是内存安全的最终答案,开启后能够提高安全性,但不意味着安全万无一失,

11.参考资料

参考资料链接
Kernel 5.15.0-rcl MTEhttps://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html
Tools and SoftwareTools and Software
ARM Developer MTELWN:Arm64的内存标记扩展功能!-CSDN博客
CSDN LWN:ARM64的内存标记扩展功能https://developer.arm.com/architectures/cpu-architecture/a-profile?&_ga=2.256687755.1292256680.1566735535-2019613222.1563850500#mte
ARM MTE白皮书https://www.wwwbuild.net/androidperf/74222.html

这篇关于Android MTE技术详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659981

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (