深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders

本文主要是介绍深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文地址:https://arxiv.org/abs/1803.01526

文章目录

    • 前言
    • 文章主要贡献
    • 系统模型
      • 变分自编码器
      • 引入神经网络
    • 仿真结果

前言

深度通信网络专栏|自编码器:整理2018-2019年使用神经网络实现通信系统自编码器的论文,一点拙见,如有偏颇,望不吝赐教,顺颂时祺。

文章主要贡献

原来提出的最大似然估计下的盲信道均衡使用期望最大或近似期望最大,计算复杂度过高。

本文提出用变分自编码器(VAE)实现最大似然估计下的盲信道均衡,与恒模算法(CMA)相比可达到更低的ber和更低的信道获取时延。VAE的性能接近非盲自适应线性最小均方误差均衡器。

VAE由两层卷积层和少量自由参数构成,虽然计算复杂度比CMA高,但是需要估计的自由参数个数较少。

系统模型

在这里插入图片描述
一个端到端系统可表示为以上结构, y = x ∗ h + w \mathbf{y}=\mathbf{x} * \mathbf{h}+\mathbf{w} y=xh+w
使用QPSK调制,则 x = x I + j ⋅ x Q \mathrm{x}=\mathrm{x}^{I}+j \cdot \mathrm{x}^{Q} x=xI+jxQ h = h I + j ⋅ h Q \mathbf{h}=\mathbf{h}^{I}+j \cdot \mathbf{h}^{Q} h=hI+jhQ y = y I + j ⋅ y Q \mathbf{y}=\mathbf{y}^{I}+j \cdot \mathbf{y}^{Q} y=yI+jyQ
给定xy 的条件概率函数为:
p θ ( y ∣ x ) = p θ ( y I ∣ x I ) p θ ( y Q ∣ x Q ) = 1 ( π σ w 2 ) N ⋅ e − ∥ y − x ∗ h ∥ 2 / σ w 2 \begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) &=p_{\boldsymbol{\theta}}\left(\mathbf{y}^{I} | \mathbf{x}^{I}\right) p_{\boldsymbol{\theta}}\left(\mathbf{y}^{Q} | \mathbf{x}^{Q}\right) \\ &=\frac{1}{\left(\pi \sigma_{w}^{2}\right)^{N}} \cdot e^{-\|\mathbf{y}-\mathbf{x} * \mathbf{h}\|^{2} / \sigma_{w}^{2}} \end{aligned} pθ(yx)=pθ(yIxI)pθ(yQxQ)=(πσw2)N1eyxh2/σw2

变分自编码器

ML估计,即是估计向量h 和噪声方差 σ w 2 \sigma_{w}^{2} σw2,使得 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)最大,令 θ ≜ { h , σ w 2 } \boldsymbol{\theta} \triangleq\left\{\mathbf{h}, \sigma_{w}^{2}\right\} θ{h,σw2}。使用变分法可以简化这一信道估计问题:使用变分法求泛函数 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)的极小值,将问题转化为 最大化 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)的lower bound!使用神经网络解决此最大最小化问题。

补充:变分法
- 变分法用于求解使泛函数取得极大值或极小值的极值函数
- 泛函数:输入是一个函数,输出是一个值。
- 通常在变分法中,泛函数是一个积分
eg. I ( y ) = ∫ x 1 x 2 F d x I(y)=\int_{x_{1}}^{x_{2}} F d x I(y)=x1x2Fdx,F可以是y(x)和y(x)各阶导数的函数。
- 在这里 p θ ( y ) = ∫ x p ( x ) p θ ( y ∣ x ) d x p_{\boldsymbol{\theta}}(\mathbf{y})=\int_{\mathbf{x}} p(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) d \mathbf{x} pθ(y)=xp(x)pθ(yx)dx ,y是x的函数。

log ⁡ p θ ( y ) ≥ E q Φ ( x ∣ y ) [ − log ⁡ q Φ ( x ∣ y ) + log ⁡ p θ ( x , y ) ] = − D K L [ q Φ ( x ∣ y ) ∥ p ( x ) ] ⎵ A + E q Φ ( x ∣ y ) [ log ⁡ p θ ( y ∣ x ) ] ⎵ B ≜ − L ( θ , Φ , y ) \begin{aligned} \log p_{\boldsymbol{\theta}}(\mathbf{y}) \geq & \mathbb{E}_{q_{\Phi}(\mathbf{x} | \mathbf{y})}\left[-\log q_{\Phi}(\mathbf{x} | \mathbf{y})+\log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})\right] \\=& \underbrace{-D_{K L}\left[q_{\Phi}(\mathbf{x} | \mathbf{y}) \| p(\mathbf{x})\right]}_{A} \\ &+\underbrace{\mathbb{E}_{q_{\Phi}(\mathbf{x} | \mathbf{y})}\left[\log p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x})\right]}_{B} \triangleq-\mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) \end{aligned} logpθ(y)=EqΦ(xy)[logqΦ(xy)+logpθ(x,y)]A DKL[qΦ(xy)p(x)]+B EqΦ(xy)[logpθ(yx)]L(θ,Φ,y)
引入了自由参数Φ,问题转化为找到θ和Φ,使得 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)最小。那么如何得到 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)呢?
分析上式,可知上式与 p θ ( y ∣ x ) p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) pθ(yx) q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy) p ( x ) p(\mathbf{x}) p(x)有关,其中: p θ ( y ∣ x ) = p θ ( y I ∣ x I ) p θ ( y Q ∣ x Q ) = 1 ( π σ w 2 ) N ⋅ e − ∥ y − x ∗ h ∥ 2 / σ w 2 \begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) &=p_{\boldsymbol{\theta}}\left(\mathbf{y}^{I} | \mathbf{x}^{I}\right) p_{\boldsymbol{\theta}}\left(\mathbf{y}^{Q} | \mathbf{x}^{Q}\right) \\ &=\frac{1}{\left(\pi \sigma_{w}^{2}\right)^{N}} \cdot e^{-\|\mathbf{y}-\mathbf{x} * \mathbf{h}\|^{2} / \sigma_{w}^{2}} \end{aligned} pθ(yx)=pθ(yIxI)pθ(yQxQ)=(πσw2)N1eyxh2/σw2
p ( x ) = p ( x I ) p ( x Q ) = 2 − 2 N p(\mathbf{x})=p\left(\mathbf{x}^{I}\right) p\left(\mathbf{x}^{Q}\right)=2^{-2 N} p(x)=p(xI)p(xQ)=22N
只需得到 q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy)即可得到 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y),此时可用解析的方法找到θ和Φ。

引入神经网络

在这里插入图片描述

用神经网络来求 q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy) q Φ ( x ∣ y ) = ∏ j = 0 N − 1 q Φ ( x j ∣ y ) = ∏ j = 0 N − 1 q Φ ( x j I ∣ y ) q Φ ( x j Q ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y})=\prod_{j=0}^{N-1} q_{\Phi}\left(x_{j} | \mathrm{y}\right)=\prod_{j=0}^{N-1} q_{\Phi}\left(x_{j}^{I} | \mathrm{y}\right) q_{\Phi}\left(x_{j}^{Q} | \mathrm{y}\right) qΦ(xy)=j=0N1qΦ(xjy)=j=0N1qΦ(xjIy)qΦ(xjQy)
神经网络的输出为 q Φ ( x j I ∣ y ) 和 q Φ ( x j Q ∣ y ) q_{\Phi}\left(x_{j}^{I} | \mathbf{y}\right) 和q_{\Phi}\left(x_{j}^{Q} | \mathbf{y}\right) qΦ(xjIy)qΦ(xjQy),输出维度为2N.

至此,我们得到了 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)的显示表达。

仿真结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659884

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置