深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders

本文主要是介绍深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文地址:https://arxiv.org/abs/1803.01526

文章目录

    • 前言
    • 文章主要贡献
    • 系统模型
      • 变分自编码器
      • 引入神经网络
    • 仿真结果

前言

深度通信网络专栏|自编码器:整理2018-2019年使用神经网络实现通信系统自编码器的论文,一点拙见,如有偏颇,望不吝赐教,顺颂时祺。

文章主要贡献

原来提出的最大似然估计下的盲信道均衡使用期望最大或近似期望最大,计算复杂度过高。

本文提出用变分自编码器(VAE)实现最大似然估计下的盲信道均衡,与恒模算法(CMA)相比可达到更低的ber和更低的信道获取时延。VAE的性能接近非盲自适应线性最小均方误差均衡器。

VAE由两层卷积层和少量自由参数构成,虽然计算复杂度比CMA高,但是需要估计的自由参数个数较少。

系统模型

在这里插入图片描述
一个端到端系统可表示为以上结构, y = x ∗ h + w \mathbf{y}=\mathbf{x} * \mathbf{h}+\mathbf{w} y=xh+w
使用QPSK调制,则 x = x I + j ⋅ x Q \mathrm{x}=\mathrm{x}^{I}+j \cdot \mathrm{x}^{Q} x=xI+jxQ h = h I + j ⋅ h Q \mathbf{h}=\mathbf{h}^{I}+j \cdot \mathbf{h}^{Q} h=hI+jhQ y = y I + j ⋅ y Q \mathbf{y}=\mathbf{y}^{I}+j \cdot \mathbf{y}^{Q} y=yI+jyQ
给定xy 的条件概率函数为:
p θ ( y ∣ x ) = p θ ( y I ∣ x I ) p θ ( y Q ∣ x Q ) = 1 ( π σ w 2 ) N ⋅ e − ∥ y − x ∗ h ∥ 2 / σ w 2 \begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) &=p_{\boldsymbol{\theta}}\left(\mathbf{y}^{I} | \mathbf{x}^{I}\right) p_{\boldsymbol{\theta}}\left(\mathbf{y}^{Q} | \mathbf{x}^{Q}\right) \\ &=\frac{1}{\left(\pi \sigma_{w}^{2}\right)^{N}} \cdot e^{-\|\mathbf{y}-\mathbf{x} * \mathbf{h}\|^{2} / \sigma_{w}^{2}} \end{aligned} pθ(yx)=pθ(yIxI)pθ(yQxQ)=(πσw2)N1eyxh2/σw2

变分自编码器

ML估计,即是估计向量h 和噪声方差 σ w 2 \sigma_{w}^{2} σw2,使得 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)最大,令 θ ≜ { h , σ w 2 } \boldsymbol{\theta} \triangleq\left\{\mathbf{h}, \sigma_{w}^{2}\right\} θ{h,σw2}。使用变分法可以简化这一信道估计问题:使用变分法求泛函数 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)的极小值,将问题转化为 最大化 log ⁡ p θ ( y ) \log p_{\boldsymbol{\theta}}(\mathbf{y}) logpθ(y)的lower bound!使用神经网络解决此最大最小化问题。

补充:变分法
- 变分法用于求解使泛函数取得极大值或极小值的极值函数
- 泛函数:输入是一个函数,输出是一个值。
- 通常在变分法中,泛函数是一个积分
eg. I ( y ) = ∫ x 1 x 2 F d x I(y)=\int_{x_{1}}^{x_{2}} F d x I(y)=x1x2Fdx,F可以是y(x)和y(x)各阶导数的函数。
- 在这里 p θ ( y ) = ∫ x p ( x ) p θ ( y ∣ x ) d x p_{\boldsymbol{\theta}}(\mathbf{y})=\int_{\mathbf{x}} p(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) d \mathbf{x} pθ(y)=xp(x)pθ(yx)dx ,y是x的函数。

log ⁡ p θ ( y ) ≥ E q Φ ( x ∣ y ) [ − log ⁡ q Φ ( x ∣ y ) + log ⁡ p θ ( x , y ) ] = − D K L [ q Φ ( x ∣ y ) ∥ p ( x ) ] ⎵ A + E q Φ ( x ∣ y ) [ log ⁡ p θ ( y ∣ x ) ] ⎵ B ≜ − L ( θ , Φ , y ) \begin{aligned} \log p_{\boldsymbol{\theta}}(\mathbf{y}) \geq & \mathbb{E}_{q_{\Phi}(\mathbf{x} | \mathbf{y})}\left[-\log q_{\Phi}(\mathbf{x} | \mathbf{y})+\log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})\right] \\=& \underbrace{-D_{K L}\left[q_{\Phi}(\mathbf{x} | \mathbf{y}) \| p(\mathbf{x})\right]}_{A} \\ &+\underbrace{\mathbb{E}_{q_{\Phi}(\mathbf{x} | \mathbf{y})}\left[\log p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x})\right]}_{B} \triangleq-\mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) \end{aligned} logpθ(y)=EqΦ(xy)[logqΦ(xy)+logpθ(x,y)]A DKL[qΦ(xy)p(x)]+B EqΦ(xy)[logpθ(yx)]L(θ,Φ,y)
引入了自由参数Φ,问题转化为找到θ和Φ,使得 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)最小。那么如何得到 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)呢?
分析上式,可知上式与 p θ ( y ∣ x ) p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) pθ(yx) q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy) p ( x ) p(\mathbf{x}) p(x)有关,其中: p θ ( y ∣ x ) = p θ ( y I ∣ x I ) p θ ( y Q ∣ x Q ) = 1 ( π σ w 2 ) N ⋅ e − ∥ y − x ∗ h ∥ 2 / σ w 2 \begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) &=p_{\boldsymbol{\theta}}\left(\mathbf{y}^{I} | \mathbf{x}^{I}\right) p_{\boldsymbol{\theta}}\left(\mathbf{y}^{Q} | \mathbf{x}^{Q}\right) \\ &=\frac{1}{\left(\pi \sigma_{w}^{2}\right)^{N}} \cdot e^{-\|\mathbf{y}-\mathbf{x} * \mathbf{h}\|^{2} / \sigma_{w}^{2}} \end{aligned} pθ(yx)=pθ(yIxI)pθ(yQxQ)=(πσw2)N1eyxh2/σw2
p ( x ) = p ( x I ) p ( x Q ) = 2 − 2 N p(\mathbf{x})=p\left(\mathbf{x}^{I}\right) p\left(\mathbf{x}^{Q}\right)=2^{-2 N} p(x)=p(xI)p(xQ)=22N
只需得到 q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy)即可得到 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y),此时可用解析的方法找到θ和Φ。

引入神经网络

在这里插入图片描述

用神经网络来求 q Φ ( x ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y}) qΦ(xy) q Φ ( x ∣ y ) = ∏ j = 0 N − 1 q Φ ( x j ∣ y ) = ∏ j = 0 N − 1 q Φ ( x j I ∣ y ) q Φ ( x j Q ∣ y ) q_{\Phi}(\mathrm{x} | \mathrm{y})=\prod_{j=0}^{N-1} q_{\Phi}\left(x_{j} | \mathrm{y}\right)=\prod_{j=0}^{N-1} q_{\Phi}\left(x_{j}^{I} | \mathrm{y}\right) q_{\Phi}\left(x_{j}^{Q} | \mathrm{y}\right) qΦ(xy)=j=0N1qΦ(xjy)=j=0N1qΦ(xjIy)qΦ(xjQy)
神经网络的输出为 q Φ ( x j I ∣ y ) 和 q Φ ( x j Q ∣ y ) q_{\Phi}\left(x_{j}^{I} | \mathbf{y}\right) 和q_{\Phi}\left(x_{j}^{Q} | \mathbf{y}\right) qΦ(xjIy)qΦ(xjQy),输出维度为2N.

至此,我们得到了 L ( θ , Φ , y ) \mathcal{L}(\boldsymbol{\theta}, \mathbf{\Phi}, \mathbf{y}) L(θ,Φ,y)的显示表达。

仿真结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659884

相关文章

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑