Docker 镜像优化工具,轻松完成构件瘦身 | 开源日报 No.158

本文主要是介绍Docker 镜像优化工具,轻松完成构件瘦身 | 开源日报 No.158,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

picture

wagoodman/dive

Stars: 41.7k License: MIT

picture

dive 是一个用于探索 Docker 镜像、层内容,并发现如何缩小 Docker/OCI 镜像大小的工具。

  • 显示按层分解的 Docker 镜像内容
  • 指示每个层中发生了什么变化
  • 估算“镜像效率”
  • 快速构建/分析周期
  • CI 集成
  • 支持多种镜像来源和容器引擎安装方法,包括 Ubuntu/Debian、RHEL/Centos、Arch Linux 等,以及 Mac 和 Windows 平台。同时也支持通过 Go 工具进行安装。

ethen8181/machine-learning

Stars: 3.0k License: MIT

machine-learning 是一个持续更新的开源项目,主要用 Python3 编写机器学习教程。
该项目解决了如何以 Jupyter Notebook 格式介绍机器学习内容的问题。

  • 主要功能包括深度学习、模型部署、运筹研究、强化学习等多个方向的教程。
  • 核心优势在于其内容旨在实现数学符号与 Python 科研栈(包括 numpy, numba, scipy, pandas, matplotlib 等)之间良好平衡,并使用诸如 scikit-learn,fasttext,huggingface 等开源库。
  • 重点特性有对各种算法和技术进行详尽讲解,并提供大量实例代码。例如:深度神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络 (LSTM) 以及 Word2vec 等。

facebookresearch/habitat-sim

Stars: 2.2k License: MIT

picture

habitat-sim 是一个灵活、高性能的三维模拟器,用于体验式人工智能研究。
该项目的主要功能、关键特性和核心优势包括:

  • 支持室内/室外空间的 3D 扫描
  • 支持 CAD 模型和分段刚体对象
  • 可配置传感器(RGB-D 相机、自我运动感知)
  • 通过 URDF 描述机器人
  • 刚体力学(通过 Bullet 实现)

该项目旨在提供快速模拟速度,并通常与 Habitat-Lab 一起使用,后者是一个端到端实验库,用于进行体验式人工智能任务。

QwenLM/Qwen

Stars: 8.2k License: Apache-2.0

picture

Qwen 是由阿里云提出的聊天和预训练大型语言模型的官方存储库。
该项目主要功能、关键特性、核心优势包括:

  • 提供了强大的基础语言模型,覆盖多个领域和语言(重点是中文和英文),在基准数据集上表现出竞争力
  • 提供了与人类偏好对齐的聊天模型,能够进行对话、创作内容、提取信息等,并且能够使用工具或扮演代理人角色
  • 支持不同规模的预训练模型,并提供量化版本以及推理性能统计等详细信息
  • 提供了快速入门指南、微调教程以及部署说明等相关资源
  • 在一系列基准数据集上,Qwen 模型在自然语言理解、数学问题求解等任务上表现优异,超过了类似规模基线模型。

openobserve/openobserve

Stars: 7.8k License: AGPL-3.0

https://osguider.oss-cn-guangzhou.aliyuncs.com/subject/ceb50cca07ac7f6db977bbe06063f83a.webp

openobserve 是一个云原生的可观测性平台,专门用于日志、指标、跟踪、分析和实时用户监控(RUM),设计用于 PB 级别的规模。
该项目主要功能、关键特性和核心优势包括:

  • 提供全面支持各种数据类型的日志、指标和跟踪
  • 完全兼容 OTLP 以支持开放遥测
  • 包括性能追踪、错误记录和会话重播等真实用户监控功能
  • 具备超过 14 种不同图表类型进行综合数据可视化的警报与仪表板功能
  • 支持高级摄取与查询函数,如丰富化处理,剔除敏感信息,并提供 SQL 和 PromQL 查询支持等

此外还有易安装运行单一二进制文件;多样存储选项;高可用集群;动态架构适应数据结构变更;内置认证机制及多语言界面支持。

OpenDriveLab/UniAD

Stars: 1.9k License: Apache-2.0

picture

Planning-oriented Autonomous Driving 是一个统一的自动驾驶算法框架,遵循规划导向的理念。与独立模块化设计和多任务学习不同,该项目将感知、预测和规划等一系列任务按层次进行组织。

以下是该项目的核心优势:

  • 规划导向哲学:UniAD 遵循了以规划为中心的思想,在自动驾驶领域提供了一个统一且高效的解决方案。
  • 最先进性能:UniAD 在所有任务上都取得了最先进水平 (运动:0.71m minADE,占用率:63.4% IoU,规划:0.31% avg.Col)。

关键特性包括:

  • 统一框架:通过整合各个子系统,并采用分级方式处理感知、预测和规划等多项任务。
  • SOTA 性能表现:在每个阶段内部实现业界领先水平,并尤其擅长于预测和路径规则两大主要功能。

这篇关于Docker 镜像优化工具,轻松完成构件瘦身 | 开源日报 No.158的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656693

相关文章

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过