python图像处理-基于LBP的人脸检测和人脸识别

2024-01-29 09:59

本文主要是介绍python图像处理-基于LBP的人脸检测和人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python图像处理-基于LBP的人脸检测和人脸识别

主要工作是:
1.了解LBP纹理特征的原理
2.调用OPEN-CV人脸识别库,框出图像中所有的人脸
3.将人脸区域做LBPH,将其计算结果与人脸标签做训练集(H表示直方图)
4.用爬虫爬出两个人的很多图片,构成较为多图片的训练集
5.用训练出来的分类器进行人脸识别


目录

  • python图像处理-基于LBP的人脸检测和人脸识别
  • 1. LBP纹理特征的原理
  • 2.调用OPEN-CV人脸识别库,框出图像中所有的人脸
  • 3. 爬出两个人的很多图片
  • 4.将爬出的图片与标签对应
  • 5.进行分类
  • 6.实例
    • 6.1 图像与标签构成训练集
    • 6.2 进行分类
    • 6.3 利用LBPH读取训练集
    • 6.4 选取测试图片,并进行人脸检测
    • 6.5 人脸识别

头文件:

import numpy as np
import os
import cv2
import matplotlib.pyplot as plt

1. LBP纹理特征的原理

LBP: Local Binary Pattern, 局部二进制模式,是一种用来描述图像局部纹理的算子,它具有旋转不变性和灰度不变性等显著优点。它所提取的特征是局部特征,反映的是每个像素与周围像素的信息。

原始LBP算子:在33的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,33邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共2^8 = 256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。

在这里插入图片描述
圆形LBP算子:基本的 LBP 算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala 等对 LBP 算子进行了改进,将 3×3 邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点,从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子。
在这里插入图片描述
旋转不变LBP算子:从LBP的定义可以看出,LBP算子是灰度不变的,但却不是旋转不变的。图像的旋转会得到不同的LBP值。Maenpaa等人又将 LBP 算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP 值,取其最小值作为该邻域的 LBP 值。

在这里插入图片描述
LBP等价模式:一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生2^p种模式。随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。

为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)

以上都是些原理,下面是应用和思考:

在skimage库中有local_binary_pattern函数可以直接调用,函数的参数method分别取值为default, ror, uniform分别对应圆形LBP模式,LBP旋转不变模式和LBP等价模式。
下面比较旋转图片在default和ror模式下的提取效果。
原图:
在这里插入图片描述
default模式下的纹理特征提取:
在这里插入图片描述
roc模式下的纹理特征提取:
在这里插入图片描述

默认模式虽然很清楚,但是缺少旋转不变性,因为每旋转一定角度,生成的二进制就会移动,导致二进制数发生很大的变换。所以采用旋转不变性时,不论怎么旋转,都采用最小的值。这样一来,二进制不论怎么平移,都对应着唯一的值。但是这也导致,图像上的每一个点的灰度值都很接近,使图像偏暗。

2.调用OPEN-CV人脸识别库,框出图像中所有的人脸

## 这个函数是做人脸提取的,faces_rect是个四维向量,前两位输出人脸所在位置的左上方坐标,后两位是人类所在宽度
def detect_face(test_img):gray_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) # converts color img to grayscale img# the below line loads haar classifierface_haar_cascade = cv2.CascadeClassifier("D:/classofmathpicture/trainingImages/haarcascade_frontalface_default.xml")faces = face_haar_cascade.detectMultiScale(gray_img, scaleFactor = 1.32, minNeighbors = 5) # detectMultiScale returns rectanglesreturn faces, gray_img# 在图片中,在人脸位置上框出人类,并且给它标上text内容
def b_boxes(test_img, face):(x, y, w, h) = facecv2.rectangle(test_img, (x, y), (x + w, y + h), (255, 0, 0), thickness = 1)# 在框边写名字
def put_name(test_img, text, x, y):cv2.putText(test_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 1, (255, 0, 0), 1)

3. 爬出两个人的很多图片

需要放入两个文件夹,方便下面的图片与标签对应
在这里插入图片描述
链接

4.将爬出的图片与标签对应

## 训练函数,输出id(通过文件名)和 每一张图片的人脸部分。都是以链表的形式储存
def labels_train_data(directory):faces = []labels = []for path, subdirnames, filenames in os.walk(directory):for filename in filenames:if filename.startswith("."):print("Skipping system file")continueid = os.path.basename(path) # fetching subdirectory namesimg_path = os.path.join(path, filename) # fetching img pathprint("img_path:", img_path)print("id:", id)test_img = cv2.imread(img_path) # loading each imgif test_img is None:print("Image not loaded properly")continuefaces_rect, gray_img = detect_face(test_img) # calling this fn returns faces detected in particular imgif len(faces_rect) != 1:continue # since we are assuming only single person images are being fed to the classifier(x, y, w, h) = faces_rect[0]roi_gray = gray_img[y : y + w, x : x + h] # cropping region of interest (face area from grayscale image)faces.append(roi_gray)labels.append(int(id))return faces, labels

5.进行分类

# 分类函数  输入某人的人脸图片以及其标签,生产训练集
def train_classifier(faces, labels):face_recognizer = cv2.face.LBPHFaceRecognizer_create()face_recognizer.train(faces, np.array(labels))return face_recognizer

利用下面的LBPH提取人脸纹理直方图特征,进行分类,并记录在新的XML文件中。还可以用其他的特征提取算法:
在这里插入图片描述

6.实例

6.1 图像与标签构成训练集

faces, labels = labels_train_data("D:/classofmathpicture/wu")

文件夹应该是下图,0放入一个人的图片;1放入另一个人的图片。可以通过爬虫找图片
在这里插入图片描述

6.2 进行分类

#进行分类
face_recognizer = train_classifier(faces, labels)
#生成yml文件
face_recognizer.write("D:/classofmathpicture/trainingData.yml")

6.3 利用LBPH读取训练集

# 读取训练集,输出face_recognizer参数
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.read("D:/classofmathpicture/trainingData.yml")

6.4 选取测试图片,并进行人脸检测

# 选取测试图片
test_img = cv2.imread("D:/classofmathpicture/wulei_test4.png",1) # test img path
test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
faces_detected, gray_img = detect_face(test_img)
plt.imshow(test_img)

faces_detected是人脸位置,链表数表示已检测人脸数目:
在这里插入图片描述
在这里插入图片描述

6.5 人脸识别

利用图像识别函数求出参数,根据参数识别不同的人脸

##选取最小的confidence值下的人脸作为匹配最接近的,其余判定other
name = {0:"wulei",1:"reba"} # creating dict containing names
for face in faces_detected:(x, y, w, h) = faceroi_gray = gray_img[y:y+h, x:x+w]label, confidence = face_recognizer.predict(roi_gray) # predicting the label of given imageprint("Confidence:", confidence)print("Label:", label)b_boxes(test_img, face)predicted_name = name[label]
#     if confidence>100: # if this is true then it doesn't print predicted face text on screen
#         continueput_name(test_img, predicted_name, x, y)
plt.figure(figsize=(20, 10)); 
plt.imshow(test_img)

在这里插入图片描述

这篇关于python图像处理-基于LBP的人脸检测和人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656550

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地