python图像处理-基于LBP的人脸检测和人脸识别

2024-01-29 09:59

本文主要是介绍python图像处理-基于LBP的人脸检测和人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python图像处理-基于LBP的人脸检测和人脸识别

主要工作是:
1.了解LBP纹理特征的原理
2.调用OPEN-CV人脸识别库,框出图像中所有的人脸
3.将人脸区域做LBPH,将其计算结果与人脸标签做训练集(H表示直方图)
4.用爬虫爬出两个人的很多图片,构成较为多图片的训练集
5.用训练出来的分类器进行人脸识别


目录

  • python图像处理-基于LBP的人脸检测和人脸识别
  • 1. LBP纹理特征的原理
  • 2.调用OPEN-CV人脸识别库,框出图像中所有的人脸
  • 3. 爬出两个人的很多图片
  • 4.将爬出的图片与标签对应
  • 5.进行分类
  • 6.实例
    • 6.1 图像与标签构成训练集
    • 6.2 进行分类
    • 6.3 利用LBPH读取训练集
    • 6.4 选取测试图片,并进行人脸检测
    • 6.5 人脸识别

头文件:

import numpy as np
import os
import cv2
import matplotlib.pyplot as plt

1. LBP纹理特征的原理

LBP: Local Binary Pattern, 局部二进制模式,是一种用来描述图像局部纹理的算子,它具有旋转不变性和灰度不变性等显著优点。它所提取的特征是局部特征,反映的是每个像素与周围像素的信息。

原始LBP算子:在33的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,33邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共2^8 = 256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。

在这里插入图片描述
圆形LBP算子:基本的 LBP 算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala 等对 LBP 算子进行了改进,将 3×3 邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点,从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子。
在这里插入图片描述
旋转不变LBP算子:从LBP的定义可以看出,LBP算子是灰度不变的,但却不是旋转不变的。图像的旋转会得到不同的LBP值。Maenpaa等人又将 LBP 算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP 值,取其最小值作为该邻域的 LBP 值。

在这里插入图片描述
LBP等价模式:一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生2^p种模式。随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。

为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)

以上都是些原理,下面是应用和思考:

在skimage库中有local_binary_pattern函数可以直接调用,函数的参数method分别取值为default, ror, uniform分别对应圆形LBP模式,LBP旋转不变模式和LBP等价模式。
下面比较旋转图片在default和ror模式下的提取效果。
原图:
在这里插入图片描述
default模式下的纹理特征提取:
在这里插入图片描述
roc模式下的纹理特征提取:
在这里插入图片描述

默认模式虽然很清楚,但是缺少旋转不变性,因为每旋转一定角度,生成的二进制就会移动,导致二进制数发生很大的变换。所以采用旋转不变性时,不论怎么旋转,都采用最小的值。这样一来,二进制不论怎么平移,都对应着唯一的值。但是这也导致,图像上的每一个点的灰度值都很接近,使图像偏暗。

2.调用OPEN-CV人脸识别库,框出图像中所有的人脸

## 这个函数是做人脸提取的,faces_rect是个四维向量,前两位输出人脸所在位置的左上方坐标,后两位是人类所在宽度
def detect_face(test_img):gray_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) # converts color img to grayscale img# the below line loads haar classifierface_haar_cascade = cv2.CascadeClassifier("D:/classofmathpicture/trainingImages/haarcascade_frontalface_default.xml")faces = face_haar_cascade.detectMultiScale(gray_img, scaleFactor = 1.32, minNeighbors = 5) # detectMultiScale returns rectanglesreturn faces, gray_img# 在图片中,在人脸位置上框出人类,并且给它标上text内容
def b_boxes(test_img, face):(x, y, w, h) = facecv2.rectangle(test_img, (x, y), (x + w, y + h), (255, 0, 0), thickness = 1)# 在框边写名字
def put_name(test_img, text, x, y):cv2.putText(test_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 1, (255, 0, 0), 1)

3. 爬出两个人的很多图片

需要放入两个文件夹,方便下面的图片与标签对应
在这里插入图片描述
链接

4.将爬出的图片与标签对应

## 训练函数,输出id(通过文件名)和 每一张图片的人脸部分。都是以链表的形式储存
def labels_train_data(directory):faces = []labels = []for path, subdirnames, filenames in os.walk(directory):for filename in filenames:if filename.startswith("."):print("Skipping system file")continueid = os.path.basename(path) # fetching subdirectory namesimg_path = os.path.join(path, filename) # fetching img pathprint("img_path:", img_path)print("id:", id)test_img = cv2.imread(img_path) # loading each imgif test_img is None:print("Image not loaded properly")continuefaces_rect, gray_img = detect_face(test_img) # calling this fn returns faces detected in particular imgif len(faces_rect) != 1:continue # since we are assuming only single person images are being fed to the classifier(x, y, w, h) = faces_rect[0]roi_gray = gray_img[y : y + w, x : x + h] # cropping region of interest (face area from grayscale image)faces.append(roi_gray)labels.append(int(id))return faces, labels

5.进行分类

# 分类函数  输入某人的人脸图片以及其标签,生产训练集
def train_classifier(faces, labels):face_recognizer = cv2.face.LBPHFaceRecognizer_create()face_recognizer.train(faces, np.array(labels))return face_recognizer

利用下面的LBPH提取人脸纹理直方图特征,进行分类,并记录在新的XML文件中。还可以用其他的特征提取算法:
在这里插入图片描述

6.实例

6.1 图像与标签构成训练集

faces, labels = labels_train_data("D:/classofmathpicture/wu")

文件夹应该是下图,0放入一个人的图片;1放入另一个人的图片。可以通过爬虫找图片
在这里插入图片描述

6.2 进行分类

#进行分类
face_recognizer = train_classifier(faces, labels)
#生成yml文件
face_recognizer.write("D:/classofmathpicture/trainingData.yml")

6.3 利用LBPH读取训练集

# 读取训练集,输出face_recognizer参数
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.read("D:/classofmathpicture/trainingData.yml")

6.4 选取测试图片,并进行人脸检测

# 选取测试图片
test_img = cv2.imread("D:/classofmathpicture/wulei_test4.png",1) # test img path
test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
faces_detected, gray_img = detect_face(test_img)
plt.imshow(test_img)

faces_detected是人脸位置,链表数表示已检测人脸数目:
在这里插入图片描述
在这里插入图片描述

6.5 人脸识别

利用图像识别函数求出参数,根据参数识别不同的人脸

##选取最小的confidence值下的人脸作为匹配最接近的,其余判定other
name = {0:"wulei",1:"reba"} # creating dict containing names
for face in faces_detected:(x, y, w, h) = faceroi_gray = gray_img[y:y+h, x:x+w]label, confidence = face_recognizer.predict(roi_gray) # predicting the label of given imageprint("Confidence:", confidence)print("Label:", label)b_boxes(test_img, face)predicted_name = name[label]
#     if confidence>100: # if this is true then it doesn't print predicted face text on screen
#         continueput_name(test_img, predicted_name, x, y)
plt.figure(figsize=(20, 10)); 
plt.imshow(test_img)

在这里插入图片描述

这篇关于python图像处理-基于LBP的人脸检测和人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656550

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: