算法训练day22Leetcode236二叉搜索树的最近祖先701二叉搜索树中的插入操作450删除二叉搜索树中的节点

本文主要是介绍算法训练day22Leetcode236二叉搜索树的最近祖先701二叉搜索树中的插入操作450删除二叉搜索树中的节点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

235 二叉搜索树的最近公共祖先

题目描述

https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/description/

我的想法

利用二叉搜索树特性遍历,从上到下遍历

题目分析

在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?

因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。

递归法
递归三部曲如下:

  1. 确定递归函数返回值以及参数
    参数就是当前节点,以及两个结点 p、q。

返回值是要返回最近公共祖先,所以是TreeNode * 。

代码如下:

TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q)
  1. 确定终止条件
    遇到空返回就可以
if (cur == nullptr) return cur;

其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。

  1. 确定单层递归逻辑
    在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭又闭)

那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。

需要注意的是此时不知道p和q谁大,所以两个都要判断

代码如下:

if (cur->val > p->val && cur->val > q->val) {TreeNode* left = traversal(cur->left, p, q);if (left != NULL) {return left;}
}

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树。

搜索一条边的写法:
if (递归函数(root->left)) return ;
if (递归函数(root->right)) return ;
搜索整个树写法:left = 递归函数(root->left);
right = 递归函数(root->right);

left与right的逻辑处理;
本题就是标准的搜索一条边的写法,遇到递归函数的返回值,如果不为空,立刻返回。

如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历(目标区间在右子树)。

剩下的情况,就是cur节点在区间(p->val <= cur->val && cur->val <= q->val)或者 (q->val <= cur->val && cur->val <= p->val)中,那么cur就是最近公共祖先了,直接返回cur。

acm模式代码

#include <iostream>
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x):val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode* left, TreeNode* right):val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == nullptr) return nullptr;if (root->val > p->val && root->val > q->val) {TreeNode* left = lowestCommonAncestor(root->left, p, q);if (left != nullptr) return left;    }if (root->val < p->val && root->val < q->val) {TreeNode* right = lowestCommonAncestor(root->right, p, q);if (right != nullptr) return right;}return root;}
};int main() {// Example tree creationTreeNode* root = new TreeNode(6);root->left = new TreeNode(2);root->right = new TreeNode(8);root->left->left = new TreeNode(0);root->left->right = new TreeNode(4);root->left->right->left = new TreeNode(3);root->left->right->right = new TreeNode(5);root->right->left = new TreeNode(7);root->right->right = new TreeNode(9);Solution sol;TreeNode* p = root->left; // For example, node with value 2TreeNode* q = root->right; // For example, node with value 8TreeNode* lca = sol.lowestCommonAncestor(root, p, q);if (lca != nullptr) {std::cout << "Lowest Common Ancestor: " << lca->val << std::endl;} else {std::cout << "No common ancestor found." << std::endl;}// Clean up memorydelete root->left->right->right;delete root->left->right->left;delete root->left->right;delete root->left->left;delete root->right->right;delete root->right->left;delete root->left;delete root->right;delete root;return 0;
}

701 二叉搜索树中的插入操作

题目描述

https://leetcode.cn/problems/insert-into-a-binary-search-tree/description/

我的想法

采用中序遍历

题目分析

只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了

递归三部曲:

  1. 确定递归函数参数以及返回值
    参数就是根节点指针,以及要插入元素,这里递归函数要不要有返回值呢?

可以有,也可以没有,但递归函数如果没有返回值的话,实现是比较麻烦的,下面也会给出其具体实现代码。

有返回值的话,可以利用返回值完成新加入的节点与其父节点的赋值操作。(下面会进一步解释)

递归函数的返回类型为节点类型TreeNode * 。

代码如下:

TreeNode* insertIntoBST(TreeNode* root, int val)
  1. 确定终止条件
    终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。

代码如下:

if (root == NULL) {TreeNode* node = new TreeNode(val);return node;
}

这里把添加的节点返回给上一层,就完成了父子节点的赋值操作了,详细再往下看。

  1. 确定单层递归逻辑

    此时要明确,需要遍历整棵树么?

别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱。

搜索树是有方向了,可以根据插入元素的数值,决定递归方向。

代码如下:

if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;

acm模式代码

#include <iostream>
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x):val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode* left, TreeNode* right):val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == nullptr) return nullptr;if (root->val > p->val && root->val > q->val) {TreeNode* left = lowestCommonAncestor(root->left, p, q);if (left != nullptr) return left;    }if (root->val < p->val && root->val < q->val) {TreeNode* right = lowestCommonAncestor(root->right, p, q);if (right != nullptr) return right;}return root;}
};int main() {// Example tree creationTreeNode* root = new TreeNode(6);root->left = new TreeNode(2);root->right = new TreeNode(8);root->left->left = new TreeNode(0);root->left->right = new TreeNode(4);root->left->right->left = new TreeNode(3);root->left->right->right = new TreeNode(5);root->right->left = new TreeNode(7);root->right->right = new TreeNode(9);Solution sol;TreeNode* p = root->left; // For example, node with value 2TreeNode* q = root->right; // For example, node with value 8TreeNode* lca = sol.lowestCommonAncestor(root, p, q);if (lca != nullptr) {std::cout << "Lowest Common Ancestor: " << lca->val << std::endl;} else {std::cout << "No common ancestor found." << std::endl;}// Clean up memorydelete root->left->right->right;delete root->left->right->left;delete root->left->right;delete root->left->left;delete root->right->right;delete root->right->left;delete root->left;delete root->right;delete root;return 0;
}

450 删除二叉搜索树中的节点

题目描述

https://leetcode.cn/problems/delete-node-in-a-bst/description/

题目分析

搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑

递归
递归三部曲:

  1. 确定递归函数参数以及返回值

说到递归函数的返回值,在二叉树:搜索树中的插入操作 (opens new window)中通过递归返回值来加入新节点, 这里也可以通过递归返回值删除节点。

代码如下:

TreeNode* deleteNode(TreeNode* root, int key)
  1. 确定终止条件

遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了

if (root == nullptr) return root;
  1. 确定单层递归的逻辑
    这里就把二叉搜索树中删除节点遇到的情况都搞清楚。

有以下五种情况:

第一种情况:没找到删除的节点,遍历到空节点直接返回了

找到删除的节点

第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点

第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点

第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点

第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点if (root->left == nullptr) return root->right;// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) return root->left;// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) {cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}
}
// 相当于把新的节点返回给上一层,上一层就要用 root->left 或者 root->right接住,代码如下:
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;

acm模式代码

#include <iostream>
struct TreeNode
{int val;TreeNode* left;TreeNode* right;TreeNode(int x):val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode* left, TreeNode* right):val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {//1.确定终止条件if (root == nullptr) {return nullptr;}if (root->val == key) {//左右子树都为空,说明自身是叶子节点if (root->left == nullptr && root->right == nullptr) {return nullptr;}//左子树为空,右子树不为空else if (root->left == nullptr && root->right != nullptr) {return root->right;}//左子树不为空,右子树为空else if (root->left != nullptr && root->right == nullptr) {return root->left;}//左右子树都不为空else {TreeNode* cur = root->right;while (cur->left != nullptr) {cur = cur->left;}cur->left = root->left;return root->right ;}}//2.确定单层递归if (root->val > key) {root->left = deleteNode(root->left, key);}else if (root->val < key) {root->right = deleteNode(root->right, key);}return root;}
};void printInOrder(TreeNode* node) {if (node == nullptr) {return;}printInOrder(node->left);std::cout << node->val << " ";printInOrder(node->right);
}void deleteTree(TreeNode* node) {if (node == nullptr) {return;}deleteTree(node->left);deleteTree(node->right);delete node;
}int main() {// 创建测试树TreeNode* root = new TreeNode(5);root->left = new TreeNode(3);root->right = new TreeNode(6);root->left->left = new TreeNode(2);root->left->right = new TreeNode(4);root->right->right = new TreeNode(7);// 打印原始树std::cout << "原始树的中序遍历: ";printInOrder(root);std::cout << std::endl;// 删除节点Solution solution;root = solution.deleteNode(root, 3); // 例如,删除值为3的节点// 打印更新后的树std::cout << "删除节点后的中序遍历: ";printInOrder(root);std::cout << std::endl;// 清理分配的内存deleteTree(root);
}

今日学习链接

https://programmercarl.com/0450.%E5%88%A0%E9%99%A4%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91%E4%B8%AD%E7%9A%84%E8%8A%82%E7%82%B9.html#%E6%80%9D%E8%B7%AF

这篇关于算法训练day22Leetcode236二叉搜索树的最近祖先701二叉搜索树中的插入操作450删除二叉搜索树中的节点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656441

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

Ubuntu 24.04启用root图形登录的操作流程

《Ubuntu24.04启用root图形登录的操作流程》Ubuntu默认禁用root账户的图形与SSH登录,这是为了安全,但在某些场景你可能需要直接用root登录GNOME桌面,本文以Ubuntu2... 目录一、前言二、准备工作三、设置 root 密码四、启用图形界面 root 登录1. 修改 GDM 配

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach