【Python从入门到进阶】48、当当网Scrapy项目实战(一)

2024-01-29 09:04

本文主要是介绍【Python从入门到进阶】48、当当网Scrapy项目实战(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上篇《47、Scrapy Shell的了解与应用》
上一篇我们学习了Scrapy终端命令行工具Scrapy Shell,并了解了它是如何帮助我们更好的调试爬虫程序的。本篇我们将正式开启一个Scrapy爬虫项目的实战,对当当网进行剖析和抓取。

一、当当网介绍

当当网成立于1999年11月,是一家知名的综合性网上购物商城。从早期以图书业务为主的业务形态,逐步拓展到全品类百货,包括图书音像、美妆、家居、母婴、服装和3C数码等几十个大类,数百万种商品。

二、需要抓取的页面分析

我们进入当当网首页,点击“图书”链接:

进入当当网图书分类专区首页:

可以看到左侧有很多图书的分类。
点击其中一个最末级分类(我选择的是“一般管理类”,网址为http://category.dangdang.com/cp01.22.01.00.00.00.html),可以看到具体的图书分类列表:

列表包含书籍图片、书籍标题、作者、出版社、评分、标签和简介等内容。拉到最下面可以看到具体的分页,默认我们在第1页,总计100页:

我们要做的事情,就是将这100页的全部的图书信息,给它全部抓取下来。在之前我们单独讲解爬虫的时候,可能工作量比较大,但是我们使用Scrapy框架的话,效率很高,接下来我们就进行实战。

三、创建当当网Scrapy项目

首先在工程目录下使用“scrapy startproject 项目名”指令创建项目。然后进入创建好的工程的spiders目录下,使用“scrapy genspider 爬虫名 起始url地址”指令创建一个名为“dang”的爬虫文件:

这是“dang”的爬虫文件生成的代码:

import scrapyclass DangSpider(scrapy.Spider):name = "dang"allowed_domains = ["category.dangdang.com"]start_urls = ["http://category.dangdang.com/cp01.22.01.00.00.00.html"]def parse(self, response):pass

我们来校验一下这个网站有没有反爬虫校验,我们把上面的“pass”更换为“print”,打印一些等于号,看看一会能不能正常获取:
   

 def parse(self, response):print("========================")

我们在控制台使用“scrapy crawl dang”执行爬虫,可以看到结果里包含我们打印的等于号:

这说明网站没有反爬虫机制,我们无需调整scrapy功能的配置文件来忽略爬虫警告了。

四、编写分类图书信息获取爬虫

上面的工程以及爬虫文件创建好后,我们就来编写分类图书信息获取的爬虫逻辑。
我们再来回顾一下之前讲解的scrapy的工程项目组成:

这里面我们就会用到item、pipelines等组件类了。

1、定义item数据结构

我们打开item.py文件,来定义我们的基础数据结构,通俗的来说就是我们需要下载的数据都有什么。这里我们根据页面剖析的结果,可以看到有以下几种数据:

我们在item.py文件定义相关的数据:

import scrapyclass ScrapyDangdang01Item(scrapy.Item):# 书籍图片src = scrapy.Field()# 书籍名称title = scrapy.Field()# 书籍作者search_book_author = scrapy.Field()# 书籍价格price = scrapy.Field()# 书籍简介detail = scrapy.Field()

2、分析spider爬取逻辑

我们分析书籍图片的地址xpath代码:

经过分析,获取每一页的所有图书的图片的xpath代码为:

//ul[@id="component_59"]/li//img/@src

同样的,获取书籍名称,可以直接从img的alt属性获取,xpath代码为:

//ul[@id="component_59"]/li//img/@alt

然后我们分析作者的数据:

获取作者的xpath代码为:

//ul[@id="component_59"]/li/p[@class="search_book_author"]//span[1]//a[1]/@title

然后我们分析价格的数据:

获取价格的xpath代码为:

//ul[@id="component_59"]/li/p[@class="price"]//span[@class="search_now_price"]/text()

最后我们分析书籍简介的数据:

获取书籍简介的xpath代码为:

//ul[@id="component_59"]/li/p[@class="detail"]/text()

3、编写spider爬虫代码

按照上面的分析,编写初步的spider爬虫代码,如下:

import scrapyclass DangSpider(scrapy.Spider):name = "dang"allowed_domains = ["category.dangdang.com"]start_urls = ["http://category.dangdang.com/cp01.22.01.00.00.00.html"]def parse(self, response):# 获取所有的图书列表对象li_list = response.xpath('//ul[@id="component_59"]/li')# 遍历li列表,获取每一个li元素的几个值for li in li_list:# 书籍图片src = li.xpath('.//img/@src').extract_first()# 书籍名称title = li.xpath('.//img/@alt').extract_first()# 书籍作者search_book_author = li.xpath('./p[@class="search_book_author"]//span[1]//a[1]/@title').extract_first()# 书籍价格price = li.xpath('./p[@class="price"]//span[@class="search_now_price"]/text()').extract_first()# 书籍简介detail = li.xpath('./p[@class="detail"]/text()').extract_first()print("======================")print("【图片地址】", src)print("【书籍标题】", title)print("【书籍作者】", search_book_author)print("【书籍价格】", price,)print("【书籍简介】", detail)

我们先运行爬虫打印一下,看看获取到的信息对不对:

发现相关信息确实获取到了,但是我们同时也注意到了一个问题,就是书籍图片的src地址,除了第一张外,后面的地址全部是重复的,都是“ images/model/guan/url_none.png”。这是因为网页使用了懒加载功能,除了第一个图片,其他的在往下翻网页的时候,才会获取到真正的图片。

那么我们真么破除懒加载,获取真正的图片地址呢?我们去网页分析一下书籍图片的html代码:

<img data-original="//img3m9.ddimg.cn/85/14/29491789-1_b_20.jpg" src="//img3m9.ddimg.cn/85/14/29491789-1_b_20.jpg" alt=" 金线(麦肯锡真正在用的管理工具。冯唐倾囊相授成事学修炼方法。)" style="display: block;" class="">

这里面的src属性,在没有往下拉网页前,里面的图片地址统一为“ images/model/guan/url_none.png”空图片,往下拉到它之后,src里面的内容才会变更为data-original中的地址(就像上面是一个已经加载过的图片,src和data-original属性的地址一样)。
所以,我们的图片地址需要更改为“data-original”属性,而不是原本的src,这样就可以破除懒加载的阻碍了:

# 书籍图片
src = li.xpath('.//img/@data-original').extract_first()

此时再去看结果,真实的图片地址就有了:

但是细心的朋友会发现,更改为“data-original”属性后,第一本书籍的图片地址就“空”了:

我们观察一下网页,发现第一个图书的图片信息汇总,没有“data-original”属性,只有一个src:

我们需要单独处理一下第一张图片的地址,代码优化如下:

 # 书籍图片
src = li.xpath('.//img/@data-original').extract_first()
# 第一张图片没有@data-original属性,所以会获取到空值,此时需要获取src属性值
if src:src = src
else:src = li.xpath('.//img/@src').extract_first()

修改之后,我们重新运行爬虫,此时可以看到获取到了第一张图片及后面所有图片的地址:

至此,第一部分就讲解完毕。下一篇我们继续编写该当当网的项目,讲解刚刚编写的Spider与item之间的关系,以及如何使用item,以及使用pipelines管道进行数据下载的操作。
            

参考:尚硅谷Python爬虫教程小白零基础速通
转载请注明出处:https://guangzai.blog.csdn.net/article/details/135899211

这篇关于【Python从入门到进阶】48、当当网Scrapy项目实战(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656400

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与