球面谐波函数 (Spherical harmonic function)分析实际颗粒形状公式推导及数值实现 Part 1

本文主要是介绍球面谐波函数 (Spherical harmonic function)分析实际颗粒形状公式推导及数值实现 Part 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、公式推导

        球面谐波函数是一组定义在单位球上的基函数,是傅里叶展开式的一种;球面谐波函数最早应用于电磁场、核物理学、行星重力场计算,Garboczi (2002)最早基于该方法分析了混凝土集料的颗粒形状特性;展现出其对颗粒形状解析表征的强大能力。

         球面谐波函数对颗粒形状分析主要原理是将颗粒的形状视作一个三维的解析表达式,并能够用球面谐波基函数的线性组合进行展开,如下式表示:

\begin{equation} v(\theta, \phi)=\sum_{n=0}^{\infty} \sum_{m=-n}^n c_n^m Y_n^m(\theta, \phi) \end{equation}

其中,n表示阶数,m表示次数;$Y_n^m$表示球面谐波基函数,表达式如下:

\begin{equation} Y_n^m(\theta, \phi)=\sqrt{\left(\frac{(2 n+1)(n-m) !}{4 \pi(n+m) !}\right)} P_n^m(\cos (\theta)) e^{j m \phi} \end{equation}

$P_n^m$表示关联勒让德函数,系数的表达式如下:

\begin{equation} c_n^m=\int_0^{2 \pi} \int_0^\pi \mathrm{d} \phi \mathrm{d} \theta \sin (\theta) r(\theta, \phi) Y_n^{m *} \end{equation}

其中星号表示共轭复数。以上是Garboczi在该方法的原始文献中提出的系数求解方法;后续的研究对此求解方法进行了改进(Zhou Bo等, 2015,香港城市大学),$P_n^m$的表达式可以写成:

其中,p_n(x)表达式如下:

        接下来是系数的计算,将要分析的颗粒的表面进行参数化,映射到一个单位球体中(接下来的文章中再介绍),坐标用V表示,如下:

      那么根据第一个式子,我们就能得到一个线性方程组,注意这个方程组中是将Y_n^m转化成一个行向量,依次计算(m,n)为(0,0)、(-1,1)、(0,1) ......时候的值,如下所示:

这样只要选的原始颗粒上的坐标个数i足够多大于(n+1)^2,就能得到确定的系数值。

二、球面谐波基函数Y_n^m的数值实现

            数值实现时,一般采用分段的形式将球面谐波函数写出:

n=0时候,Y_n^m等于:

            在Matlab中编程实现(实数形式的基函数),程序及注释如下:

 % 定义参数l = 3; % 角动量量子数m = -3; % 磁量子数% 创建球坐标网格theta = linspace(0, pi, 100);phi = linspace(0, 2*pi, 200);[Theta, Phi] = meshgrid(theta, phi);if l ~= 0% 计算KlmKlm = sqrt((2 * l + 1) * factorial(l - abs(m)) / (4 * pi * factorial(l + abs(m))));if m > 0% 计算勒让德多项式Plm1 = legendre(l,cos(Theta));Plm = reshape(Plm1(m + 1,:,:), size(Phi));Ylm = sqrt(2) .* Klm .* cos(m .* Phi) .* Plm;endif m < 0Plm1 = legendre(l,cos(Theta));Plm = reshape(Plm1(- m + 1,:,:), size(Phi));Ylm = sqrt(2) .* Klm .* sin(- m .* Phi) .* Plm;endif m == 0Klm = sqrt((2 * l + 1) * factorial(l - abs(m)) / (4 * pi * factorial(l + abs(m))));Plm1 = legendre(l,cos(Theta));Plm = reshape(Plm1(m + 1,:,:), size(Phi));Ylm = Klm .* Plm;end% 可视化R = abs(Ylm); % 球面谐波函数的幅度X = R .* sin(Theta) .* cos(Phi);Y = R .* sin(Theta) .* sin(Phi);Z = R .* cos(Theta);figure;surf(X, Y, Z, real(Ylm),'EdgeColor','none'); % 使用实部作为颜色映射title(['球面谐波函数 Y_', num2str(l), '^', num2str(m)]);xlabel('X');ylabel('Y');zlabel('Z');colormap('jet')colorbar;axis equal;elseYlm = 0.5 * sqrt(1 / pi);% 可视化R = abs(Ylm); % 球面谐波函数的幅度X = R .* sin(Theta) .* cos(Phi);Y = R .* sin(Theta) .* sin(Phi);Z = R .* cos(Theta);figure;surf(X, Y, Z,'EdgeColor','none'); % 使用实部作为颜色映射title(['球面谐波函数 Y_', num2str(l), '^', num2str(m)]);xlabel('X');ylabel('Y');zlabel('Z');colormap('jet')colorbar;axis equal;end

运行结果:

相关的Python程序链接:

https://scipython.com/blog/visualizing-the-real-forms-of-the-spherical-harmonics/

理论链接:

https://mrtrix.readthedocs.io/en/latest/concepts/spherical_harmonics.html

这篇关于球面谐波函数 (Spherical harmonic function)分析实际颗粒形状公式推导及数值实现 Part 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656089

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取