GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品

本文主要是介绍GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据名称:

MOD13A1.006

Modis

16天

Terra

500m

数据来源:

NASA

时空范围:

2000-2022年

空间范围:

全国

波段

名称波段单位最小值最大值比例因子波长描述
NDVIB1NDVI-2000100000.0001Normalized Difference Vegetation Index
EVIB2EVI-2000100000.0001Enhanced Vegetation Index
VIQB3Bit FieldVI quality indicators
RRB40100000.0001645nmRed surface reflectance
NIRRB50100000.0001858nmNIR surface reflectance
BRB60100000.0001469nmBlue surface reflectance
MIRRB70100000.00012130nm/2105-2155nmMIR surface reflectance
VZAB8Degree0180000.01View zenith angle
SZAB90180000.01Solar zenith angle
RAAB10-18000180000.01Relative azimuth angle
CDOYB11Julian day1366Julian day of year
PRB12RankQuality reliability of VI pixel

数据简介:

MOD13A1 V6数据集是由Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品,空间分辨率为500米,具备两个主要的植被层,分别是栅格归一化植被指数(NDVI)和增强型植被指数(EVI)。产品遵循低云、低视角和最高NDVI/EVI值的原则,从获取的16天数据中选择最佳值作为影像的像素值。可用于检测植被状态和土地覆盖利用变化,并且,能够进一步用于生物化学、水循环过程和全球及区域性的气候研究,还有LAI、GPP等参数的反演。前言 – 人工智能教程

V6Terra星搭载的中分辨率成像光谱仪(MOD13A1)是一种用于获取地球植被指数的传感器。该传感器通过对地球表面的光谱信息进行观测和记录,能够提供高质量的L3级植被指数产品,为地球科学研究和生态环境监测提供了重要的数据支持。

L3级植被指数产品是通过对MODIS传感器获取的遥感数据进行处理和分析得到的。MOD13A1产品主要包括三个指标:归一化差异植被指数(NDVI)、归一化差异水体指数(NDWI)和归一化差异建筑物指数(NDWI)。

其中,归一化差异植被指数(NDVI)是衡量地表植被覆盖程度和活力的重要指标。NDVI的计算公式为(NIR - RED)/ (NIR + RED),其中NIR表示近红外波段的反射率,RED表示红光波段的反射率。NDVI的数值范围在-1到1之间,数值越高表示地表植被覆盖越多,数值越低表示植被覆盖越少。通过监测NDVI的变化,可以提供有关植被开花、叶片生长和植物胁迫状况的信息。

归一化差异水体指数(NDWI)是用于评估地表水体分布的指标。NDWI的计算公式为(NIR - SWIR)/ (NIR + SWIR),其中NIR表示近红外波段的反射率,SWIR表示短波红外波段的反射率。NDWI的数值范围从-1到1,数值越高表示地表水体分布越密集,数值越低表示水体分布越稀疏。通过监测NDWI的变化,可以提供有关水体资源分布和蓄水情况的信息。

归一化差异建筑物指数(NDBI)是用于评估建筑物分布密度的指标。NDBI的计算公式为(SWIR - NIR)/ (SWIR + NIR),其中SWIR表示短波红外波段的反射率,NIR表示近红外波段的反射率。NDBI的数值范围从-1到1,数值越高表示建筑物分布越密集,数值越低表示建筑物分布越稀疏。通过监测NDBI的变化,可以提供有关城市建设和土地利用的信息。

V6Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品具有以下特点:

  1. 高时空分辨率:MOD13A1产品提供的植被指数数据具有250米的空间分辨率和16天的时间分辨率,可以提供详细的植被覆盖和水体分布的信息,适用于不同尺度的研究和监测需求。

  2. 高质量数据:V6Terra星搭载的中分辨率成像光谱仪通过高精度的光谱观测和数据处理算法,可以提供高质量的植被指数产品。这些产品经过严格的校正和验证,能够准确反映地表植被、水体和建筑物的分布情况。

  3. 多指标综合分析:MOD13A1产品包括了归一化差异植被指数(NDVI)、归一化差异水体指数(NDWI)和归一化差异建筑物指数(NDWI)三个指标,能够提供多层次、多维度的地表信息。这些指标可以综合分析,为地球科学研究和生态环境监测提供全面的数据支持。

总之,V6Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品是一项重要的遥感技术应用。这些产品能够提供高质量、高时空分辨率的植被、水体和建筑物信息,为地球科学研究和生态环境监测提供了重要的数据支持。

引用代码:

MODIS/006/MOD13A1

 代码

/*** @File    :   MOD13A1.006* @Time    :   2023/06/06* @Author  :   GEOVIS Earth Brain* @Version :   0.1.0* @Contact :   中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License :   (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc    :  数据集key为MODIS/006/MOD13A1的MOD13A1.006类数据集  * @Name    :   MOD13A1.006数据集
*/
//指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件
var imageCollection = gve.ImageCollection("MODIS/006/MOD13A1").filterDate('2021-01-16','2021-01-31').select(['NDVI']).limit(10);print("imageCollection",imageCollection);var img = imageCollection.first();print("first", img);var visParams = {
//    gamma: 1,
//    brightness: 1,min: 0,max: 9000,palette: {"band_rendering": {"pseudocolor": {"colormap": ['#FCD163','#66A000','#3E8601','#004C00','#023B01']}}}
};Map.centerObject(img);
Map.addLayer(img,visParams);

通过LP DAAC获得的MODIS数据和产品在后续使用,销售或再分发没有任何限制,具体请参阅https://lpdaac.usgs.gov/data/data-citation-and-policies/ 

这篇关于GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/654653

相关文章

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3