【DeepLearning-9】YOLOv5模型网络结构中加入MobileViT模块

2024-01-28 19:04

本文主要是介绍【DeepLearning-9】YOLOv5模型网络结构中加入MobileViT模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、神经网络的前中后期

在神经网络中,特别是在深度卷积神经网络(CNN)中,“网络早期(低层)”、“网络中期(中层)”和“网络后期(高层)”通常指的是网络结构中不同层级的部分,每个部分在特征提取和信息处理方面有其特定的作用和特性。

1. 网络早期(低层)

  • 在网络的早期阶段插入 MobileViTBv3 可能会对原始图像进行较深层次的处理,有助于捕捉更丰富的空间特征。但同时,Transformer可能无法充分利用其处理高级语义特征的能力。

2. 网络中期(中层)

  • 在网络的中间层插入 MobileViTBv3 可能是一个平衡点,可以在提取一定级别的特征后利用Transformer的长程依赖捕捉能力。

3. 网络后期(高层)

  • 在网络的后期阶段插入 MobileViTBv3 会使其处理更抽象的特征,有助于捕捉复杂的上下文信息,但可能会丢失一些细节信息。

二、插入 MobileViTBv3 模块

在YOLOv5配置中插入 MobileViTBv3 模块需要考虑到模块的功能和网络的整体架构。MobileViTBv3 结合了卷积神经网络(CNN)和Transformer的特点,适合于复杂特征的提取和长程依赖的捕捉。基于这些考虑,以下是几个较为合适的的插入位置:

  1. 主干网络中的中期阶段

    • 例如,在 [-1, 1, Conv, [256, 3, 2]][-1, 6, C3, [256]] 之间。
    • 这里,MobileViTBv3 可以处理相对抽象的特征,并利用其Transformer部分捕捉更复杂的依赖关系。
  2. 主干网络后期

    • 在更深的层次,例如在 [-1, 1, Conv, [512, 3, 2]][-1, 9, C3, [512]] 之间。
    • 在这个位置,MobileViTBv3 将处理高级特征,并可能更好地利用Transformer结构处理复杂的场景。
  3. 检测头前期

    • 在检测头的初始阶段,例如在 [[17, 20, 23], 1, Detect, [nc, anchors]] 之前。
    • 这可以使 MobileViTBv3 直接对用于检测的特征进行最后的优化。

 三、各类型YOLOv5模型的前中后期划分

 以yolov5l.yaml为例

网络前期(低层)
  • 定位:主干网络(backbone)的开始部分。
  • 包含的层
    • [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
    • [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  • 作用:这些层主要负责捕获基础视觉特征,如边缘、纹理等。特征相对简单,更多关注细节。
网络中期(中层)
  • 定位:主干网络中的中间部分。
  • 包含的层
    • [-1, 3, C3, [128]]
    • [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
    • [-1, 6, C3, [256]]
  • 作用:这些层处理更复杂的特征,例如特定的形状和模式。开始从细节特征过渡到更抽象的特征表示。
网络后期(高层)
  • 定位:主干网络的末尾以及检测头(head)。
  • 包含的层
    • [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
    • [-1, 9, C3, [512]]
    • [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
    • [-1, 3, C3, [1024]]
    • [-1, 1, SPPF, [1024, 5]] # 9
    • 检测头(head)中的所有层
  • 作用:这些层负责处理高级别的特征,通常与目标检测任务直接相关。在这里,特征更加抽象,与目标的类别、位置等信息密切相关。

代码实现 MobileViTBv3 模块插入:

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, MobileViTBv3, [256]],[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 6, MobileViTBv3, [256]],[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 3, MobileViTBv3, [512, False]],[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5 [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

这篇关于【DeepLearning-9】YOLOv5模型网络结构中加入MobileViT模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654518

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指