哈希概念 | 哈希函数 | 哈希冲突 | 哈希桶实现 | 哈希线性探测代码实现 | 闭散列 | 开散列 | 字符串哈希算法

本文主要是介绍哈希概念 | 哈希函数 | 哈希冲突 | 哈希桶实现 | 哈希线性探测代码实现 | 闭散列 | 开散列 | 字符串哈希算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 1.哈希概念
        • 2.哈希冲突
        • 3.解决哈希冲突
          • 3.1.闭散列
          • 3.2.开散列
        • 4.字符串哈希算法

1.哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。如果一个顺序结构,有N个数据,数据之间没有顺序,暴力查找时间复杂度是O(N),但如果数据之间是有序的,就可以使用二分查找能快速的找到查找的值,但是,顺序结构保证有序来存储数据,插入和删除的代价太大!
在这里插入图片描述

对应平衡树来说,查找的时间复杂度O(log2(N))很优秀!

在这里插入图片描述

但更理想(高效)的方法是:将存储的值和存储的位置一一对应,那么一次就能找到要查找的元素;哈希(散列)方法:通过哈希函数使元素的存储位置与它的关键码之间能够建立一一映射的关系;构造出来的结构称为哈希表(Hash Table)(或者称散列表)

在这里插入图片描述

这样的哈希函数称为 除留余数法;常用的还有,直接定址法。

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B,在关键字分分布集中的情况的下使用比较好,但是,如果存储的key范围分散如:arr[] = {1,111,999}要存储这些数据就很麻烦!

我们来看一个直接地址法的例子:字符串中第一个只出现一次字符

题目描述:给定一个字符串 s ,找到 它的第一个不重复的字符,并返回它的索引 。如果不存在,则返回 -1 。如:输入: s = “leetcode” 输出: 0

题目提示:s 只包含小写字母,说明关键字集中。

class Solution {
public:int firstUniqChar(string s) {int temp[256] = {0};for(char ch : s){temp[ch]++;}for(int i = 0; i < s.size();i++){if(temp[s[i]] == 1){return i;}}return -1;}
};
2.哈希冲突

在这里插入图片描述

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

3.解决哈希冲突
3.1.闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以key存放到冲突位置中的下一个空位置中去

下面使用线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。解决哈希冲突的问题,当然还有 二次探测(H_i = (H_0 + i^2 )% m, 或者:H_i = (H_0 - i^2 )% m。其中:i =1,2,3…,H_0是通过散列函数Hash(x)对元素的关键码key 进行计算得到的位置m是表的大小。

在这里插入图片描述

这两种方法,在解决哈希冲突的时候对其他元素产生影响,如:现在要插入数据8,这个位置被14占了,就需要找下一个位置;当然这种方法,也会浪费大量的空间,但这就是用空间换时间的策略,后面开散列才是常用的解决哈希冲突的方法!

在这里插入图片描述

下面快速的使用闭散列的线性探测,实现基于闭散列的哈希表:

代码结构:

namespace order_table
{enum state{EXIST = 1,EMPTY,DELETE};template<class K, class V>struct HashData{std::pair<K, V> _kv;state _st = EMPTY;};template<class K,class V>class HashTable{typedef HashData<K, V> Data;public:HashTable(const size_t size = 5){_table.resize(size);}...private:std::vector<Data> _table;size_t _n = 0;				//  填入表中的元素个数};
}

插入操作:

  1. 通过哈希函数,计算出待插入的位置,如果没有哈希冲突(也就是说判断这个位置有没有插入的值了)直接插入,这里定义一个枚举类型来判断状态
  2. 如果哈希冲突,使用线性探测的方式,寻找下一个空位置!
  3. 在插入之前其实有一个重要的扩容问题,哈希表什么时候扩容呢? 哈希表的载荷因子定义为:α = 填入表中的元素个数 / 哈希表的长度;α 越大说明,填入表中的元素个数越多,哈希冲突的概率就会越大,所以在开放定址法中α严格定义在0.7 - 0.8之间!
  4. 哈希表扩容是会重新遍历,所以在扩容的那一下会消耗大一些
bool insert(const std::pair<K, V>& kv)
{// 查找一下,不添加重复的元素if (find(kv.first)){return false;}// 扩容if ((double)_n / (double)_table.size() >= 0.7){size_t newsize = _table.size() * 2;HashTable tb(newsize);for (int i = 0; i < _table.size(); i++){if (_table[i]._st == EXIST){tb.insert(_table[i]._kv);}}_table.swap(tb._table);}// 通过哈希函数,计算出待插入的位置,int hashi = kv.first % _table.size();// 线性探测,避免哈希冲突while (_table[hashi]._st == EXIST){hashi++;hashi %= _table.size();}_table[hashi]._kv = kv;_table[hashi]._st = EXIST;_n++;return true;
}

查找操作

  1. 查找hash表中的元素,通过哈希函数计算初步计算出了查找的位置,EXIST存在但有可能不是查找的元素,如查找14,计算到了4这个位置,但是不是要找元素,另外,当找到状态为DELETE是不能停下来的!要找到下一个空(EMPTY)位置!

    在这里插入图片描述

  2. 如果找到下一个空(EMPTY)位置说明,哈希表中不存在该元素!

Data* find(const K& key)
{int hashi = key % _table.size();while (_table[hashi]._st != EMPTY){if (_table[hashi]._st == EXIST && _table[hashi]._kv.first == key){return &_table[hashi];}hashi++;hashi %= _table.size();}return nullptr;
}

删除操作

  1. 查找的逻辑,然后,将状态置成DELETE即可。
bool erase(const K& key)
{Data* data = find(key);if (data != nullptr){data->_st = DELETE;_n--;return true;}return false;
}
3.2.开散列

开散列法又叫链地址法(开链法),或称为哈希桶开辟一个指针数组,通过哈希函数计算关键字,出现哈希冲突时,将冲突的元素通过单链表的方式链接。

在这里插入图片描述

代码结构:

namespace hash_backet
{template<class K,class V>struct HashNode{std::pair<K, V> _kv;HashNode* _next;HashNode(const std::pair<K, V>& kv):_kv(kv),_next(nullptr){}};template<class K,class V>class HashTable{typedef HashNode<K, V> Node;public:HashTable(const size_t size = 5){_table.resize(size, nullptr);}...private:std::vector<Node*> _table;size_t _n = 0;				//  填入表中的元素个数};
}

插入操作:

  1. 考虑扩容,由于使用哈希桶的方式解决哈希冲突的问题,是以链表的方式,对冲突元素进行链接,冲突不对影响其他元素,所以平衡因子 = 1时扩容

  2. 扩容使用现代方法,即重新开辟一个哈希表对象,将旧表元素插入新表中,然后旧表和新表交换!

  3. 哈希冲突时使用头插法

    在这里插入图片描述

bool insert(const std::pair<K,V> kv)
{// 避免插入重复元素if (find(kv.first)){return false;}if (_n / _table.size() >= 1){size_t new_size = _table.size() * 2;HashTable<K, V> new_table(new_size);for (int i = 0; i < _table.size(); i++){Node* cur = _table[i];while (cur){new_table.insert(cur->_kv  );cur = cur->_next;}}_table.swap(new_table._table);}int hashi = kv.first % _table.size();// 插入逻辑Node* new_node = new Node(kv);Node *cur = _table[hashi];_table[hashi] = new_node;new_node->_next = cur;_n++;return true;
}

查找操作

Node* find(const K& key)
{int hashi = key % _table.size();Node* cur = _table[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;
}

删除操作

  1. 如果为NULL不用删除,返回fasle;如果删除1,即_table[hashi]这个位置,置为NULL然后删除;如果删除4,那么4位置出为cur,prev = _table[hashi];prev-> _next = cur-> _next,然后delete删除cur
    在这里插入图片描述
bool erase(const K& key)
{int hashi = key % _table.size();Node* cur = _table[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){if (prev == nullptr){_table[hashi] = cur->_next;}else{prev = cur->_next;}delete(cur);_n--;return true;}prev = cur;cur = cur->_next;}return false;
}
4.字符串哈希算法

如果你完整的实现了上面的代码,那么使用哈希函数:int hashi = key % _table.size();时会发现,这个哈希函数只能对能整形进行计算!

如何能对浮点数和字符串进行哈希计算呢

template<class K>
struct DefaultHashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct DefaultHashFunc<std::string>
{size_t operator()(const std::string& key){size_t hash = 0;for (char ch : key){hash = hash * 131 + ch;}return hash;}
};

这样就支持了!关于哈希字符串函数算法:参考博客,完整的哈希桶的实现代码

namespace hash_backet
{	template<class K>struct DefaultHashFunc{size_t operator()(const K& key){return (size_t)key;}};template<>struct DefaultHashFunc<std::string>{size_t operator()(const std::string& key){size_t hash = 0;for (char ch : key){hash = hash * 131 + ch;}return hash;}};template<class K,class V>struct HashNode{std::pair<K, V> _kv;HashNode* _next;HashNode(const std::pair<K, V>& kv):_kv(kv),_next(nullptr){}};template<class K,class V>class HashTable{typedef HashNode<K, V> Node;public:HashTable(const size_t size = 5){_table.resize(size, nullptr);}bool insert(const std::pair<K,V> kv){// 避免插入重复元素if (find(kv.first)){return false;}if (_n / _table.size() >= 1){size_t new_size = _table.size() * 2;HashTable<K, V> new_table(new_size);for (int i = 0; i < _table.size(); i++){Node* cur = _table[i];while (cur){new_table.insert(cur->_kv  );cur = cur->_next;}}_table.swap(new_table._table);}DefaultHashFunc<K> dtf;size_t hashi = dtf(kv.first )% _table.size();// 插入逻辑Node* new_node = new Node(kv);Node *cur = _table[hashi];_table[hashi] = new_node;new_node->_next = cur;_n++;return true;}bool erase(const K& key){DefaultHashFunc<K> dtf;size_t hashi = dtf(key )% _table.size();Node* cur = _table[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){if (prev == nullptr){_table[hashi] = cur->_next;}else{prev = cur->_next;}delete(cur);_n--;return true;}prev = cur;cur = cur->_next;}return false;}Node* find(const K& key){DefaultHashFunc<K> dtf;size_t hashi =  dtf(key) % _table.size();Node* cur = _table[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}void print(){for (int i = 0; i < _table.size(); i++){printf("%d:", i);Node* data = _table[i];while (true){if (data== nullptr){std::cout << "NULL" << std::endl;break;}else{std::cout << data->_kv.second << "-->";data = data->_next;}}}}private:std::vector<Node*> _table;size_t _n = 0;				//  填入表中的元素个数,用于计算平衡因子};
}

这篇关于哈希概念 | 哈希函数 | 哈希冲突 | 哈希桶实现 | 哈希线性探测代码实现 | 闭散列 | 开散列 | 字符串哈希算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654128

相关文章

Java根据IP地址实现归属地获取

《Java根据IP地址实现归属地获取》Ip2region是一个离线IP地址定位库和IP定位数据管理框架,这篇文章主要为大家详细介绍了Java如何使用Ip2region实现根据IP地址获取归属地,感兴趣... 目录一、使用Ip2region离线获取1、Ip2region简介2、导包3、下编程载xdb文件4、J

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

浅析如何使用xstream实现javaBean与xml互转

《浅析如何使用xstream实现javaBean与xml互转》XStream是一个用于将Java对象与XML之间进行转换的库,它非常简单易用,下面将详细介绍如何使用XStream实现JavaBean与... 目录1. 引入依赖2. 定义 JavaBean3. JavaBean 转 XML4. XML 转 J

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St