SMO算法实现

2024-01-28 12:48
文章标签 算法 实现 smo

本文主要是介绍SMO算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集以及画图部分代码使用的 https://zhiyuanliplus.github.io/SVM-SMO

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# -- coding: utf-8 --# 没有使用核函数
def kij(data_x):return np.dot(data_x, data_x.T)def gxi(index, alpha_, y, kij_, b):return np.sum(alpha_ * y * (kij_[:, index].reshape(y.shape[0], 1))) + bdef gx(length, alpha_, y, kij_, b):g = []for i in range(length):g.append(gxi(i, alpha_, y, kij_, b))return gdef e(g_, y):return g_ - y# 判断是否满足Kkt条件,不满足的话,求出违反的绝对误差
def satisfy_kkt(index, alpha_, eps_, g_, y_, C_, variable_absolute_error):val = y_[index] * g_[index]if alpha_[index] == 0:if val >= 1 - eps_:return Trueelse:variable_absolute_error[index] = abs(1 - eps_ - val)return Falseif 0 < alpha_[index] < C_:if 1 - eps_ <= val <= 1 + eps_:return Trueelse:variable_absolute_error[index] = max(abs(1 - eps_ - val), abs(val - 1 - eps_))return Falseif alpha_[index] == C_:if val <= 1 + eps_:return Trueelse:variable_absolute_error[index] = abs(val - 1 - eps)return Falsedef draw(alpha, bet, data, label):plt.xlabel(u"x1")plt.xlim(0, 100)plt.ylabel(u"x2")for i in range(len(label)):if label[i] > 0:plt.plot(data[i][0], data[i][1], 'or')else:plt.plot(data[i][0], data[i][1], 'og')w1 = 0.0w2 = 0.0for i in range(len(label)):w1 += alpha[i] * label[i] * data[i][0]w2 += alpha[i] * label[i] * data[i][1]w = float(- w1 / w2)b = float(- bet / w2)r = float(1 / w2)lp_x1 = list([10, 90])lp_x2 = []lp_x2up = []lp_x2down = []for x1 in lp_x1:lp_x2.append(w * x1 + b)lp_x2up.append(w * x1 + b + r)lp_x2down.append(w * x1 + b - r)lp_x2 = list(lp_x2)lp_x2up = list(lp_x2up)lp_x2down = list(lp_x2down)plt.plot(lp_x1, lp_x2, 'b')plt.plot(lp_x1, lp_x2up, 'b--')plt.plot(lp_x1, lp_x2down, 'b--')plt.show()def smo(X, Y, C, eps, max_iter):Kij = kij(X)N = X.shape[0]  # 有多少个样本# 初始值alpha = np.zeros(len(X)).reshape(X.shape[0], 1)  # 每个alphab = 0.0G = np.array(gx(N, alpha_=alpha, y=Y, kij_=Kij, b=b)).reshape(N, 1)G.reshape(N, 1)E = e(G, Y)visit_j = {}visit_i = {}loop = 0while loop < max_iter:# 选择第一个变量# 先找到所有违反KKT条件的样本点viable_indexes = []  # 所有可选择的样本viable_indexes_alpha_less_c = []  # 所有可选择样本中alpha > 0 且 < C的viable_indexes_and_absolute_error = {}  # 违反KKT的数量以及违反的严重程度,用绝对值表示for i in range(N):if not satisfy_kkt(i, alpha, eps, G, Y, C, viable_indexes_and_absolute_error) and i not in visit_i:viable_indexes.append(i)if 0 < alpha[i] < C:viable_indexes_alpha_less_c.append(i)if len(viable_indexes) == 0:  # 找到最优解了,退出break# 所有可选择样本中 alpha= 0 或 alpha = C的viable_indexes_extra = [index for index in viable_indexes if index not in viable_indexes_alpha_less_c]i = -1# 先选择间隔边界上的支持向量点if len(viable_indexes_alpha_less_c) > 0:most_obey = -1for index in viable_indexes_alpha_less_c:if most_obey < viable_indexes_and_absolute_error[index] and index not in visit_i:most_obey = viable_indexes_and_absolute_error[index]i = indexelse:most_obey = -1for index in viable_indexes_extra:if most_obey < viable_indexes_and_absolute_error[index] and index not in visit_i:most_obey = viable_indexes_and_absolute_error[index]i = index# 到这里以后,i肯定不为-1j = -1# 选择|E1 - Ej|最大的那个jmax_absolute_error = -1for index in viable_indexes:if i == index:continueif max_absolute_error < abs(E[i] - E[index]) and index not in visit_j:max_absolute_error = abs(E[i] - E[index])j = index# 找不到j,重新选择iif j == -1:visit_j.clear()visit_i[i] = 1continue# 假设已经选择到了jalpha1_old = alpha[i].copy()  # 这里一定要用copy..因为后面alpha[i]的值会改变,它变了,alpha1_old也随之会变,找了好多原因alpha2_old = alpha[j].copy()alpha2_new_uncut = alpha2_old + Y[j] * (E[i] - E[j]) / (Kij[i][i] + Kij[j][j] - 2 * Kij[i][j])if Y[i] != Y[j]:L = max(0, alpha2_old - alpha1_old)H = min(C, C + alpha2_old - alpha1_old)else:L = max(0, alpha2_old + alpha1_old - C)H = min(C, alpha2_old + alpha1_old)# 剪辑切割if alpha2_new_uncut > H:alpha2_new = Helif L <= alpha2_new_uncut <= H:alpha2_new = alpha2_new_uncutelse:alpha2_new = L# 变化不大,重新选择jif abs(alpha2_new - alpha2_old) < 0.0001:visit_j[j] = 1continuealpha1_new = alpha1_old + Y[i] * Y[j] * (alpha2_old - alpha2_new)if alpha1_new < 0:visit_j[j] = 1continue# 更新值alpha[i] = alpha1_newalpha[j] = alpha2_newb1_new = -E[i] - Y[i] * Kij[i][i] * (alpha1_new - alpha1_old) - Y[j] * Kij[i][j] * (alpha2_new - alpha2_old) + bb2_new = -E[j] - Y[i] * Kij[i][j] * (alpha1_new - alpha1_old) - Y[j] * Kij[j][j] * (alpha2_new - alpha2_old) + bif 0 < alpha1_new < C:b = b1_newelif 0 < alpha2_new < C:b = b2_newelse:b = (b1_new + b2_new) / 2# 更新值G = np.array(gx(N, alpha_=alpha, y=Y, kij_=Kij, b=b)).reshape(N, 1)Y = Y.reshape(N, 1)E = e(G, Y)print("iter  ", loop)print("i:%d from %f to %f" % (i, float(alpha1_old), alpha1_new))print("j:%d from %f to %f" % (j, float(alpha2_old), alpha2_new))visit_j.clear()visit_i.clear()loop = loop + 1# print(alpha, b)return alpha, bif __name__ == '__main__':data = pd.read_csv("data.csv", header=None)X = np.array(data.values[:, : -1])Y = np.array(data.values[:, -1])Y = Y.reshape(X.shape[0], 1)C = 1eps = 1e-3  # 误差值max_iter = 10000  # 最大迭代次数alpha, bb = smo(X, Y, C, eps, max_iter)print(alpha)print(bb)draw(alpha, bb, X, Y)
# 注意np.array (n,) 和 (n ,1)是不一样的,(n , 1) - (n, ) = (n, n) 一定要把(n, )转化reshape为(n, 1)

输出结果表明:当迭代到6587次时,所有变量的解都满足KKT条件。

效果图如下:

 

 

这篇关于SMO算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653673

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符