C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码

本文主要是介绍C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三角剖分Delaunay算法简介

点集的三角剖分(Triangulation),对数值分析(比如有限元分析)以及图形学来说,都是极为重要的一项预处理技术。尤其是Delaunay三角剖分,由于其独特性,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树,Gabriel图等。Delaunay三角剖分有最大化最小角,“最接近于规则化的“的三角网和唯一性(任意四点不能共圆)两个特点。

 EMST(Euclidean minimum spanning tree)

Delaunay 三角剖分广泛应用于许多不同应用程序中的科学计算。虽然有大量的计算三角剖分的算法,但 Delaunay 三角剖分以其实用的几何属性广受欢迎。

 Gabriel Graph

基本属性是 Delaunay 规则。如果是二维三角剖分,通常将其称为空外接圆规则。对于一组二维点而言,这些点的 Delaunay 三角剖分可确保与每个三角形相关的外接圆的内部都不包含其他点。这种三角剖分便是 Delaunay 三角剖分。

Delaunay 三角剖分堪称“外形整齐”,原因在于为满足空外接圆属性,优先选择带有较大内角的三角形,而不是带有较小内角的三角形。非 Delaunay 三角剖分中的三角形在顶点 V2 和 V4 处呈锐角。如果将 {V2, V4} 边替换为连接 V1 和 V3 的边,会实现最小角的最大化并且使得该三角剖分变为 Delaunay 三角剖分。另外,Delaunay 三角剖分将最近邻点的点连接在一起。这两个特征(外形整齐和最近邻点关系)在实践中具有重要的作用,有助于促进在散点数据插值中使用 Delaunay 三角剖分。

虽然 Delaunay 属性定义明确,但存在退化点集时三角剖分的拓扑并不唯一。在二维中,4 个或更多特征点位于同一圆中时会引发退化。例如,正方形的顶点不具有唯一的 Delaunay 三角剖分。
 

二、三角剖分Delaunay算法的源代码


namespace Legalsoft.Truffer.Algorithm
{public struct Vertex{public int x;public int y;public int z;}public struct Triangle{public int vv0;public int vv1;public int vv2;}public class Delaunay{public const int MaxVertices = 500;public const int MaxTriangles = 1000;public Vertex[] Vertex = new Vertex[MaxVertices];public Triangle[] Triangle = new Triangle[MaxTriangles];private bool InCircle(int xp, int yp, int x1, int y1, int x2, int y2, int x3, int y3, double xc, double yc, double r){double eps;double m1;double m2;double mx1;double mx2;double my1;double my2;double dx;double dy;double rsqr;double drsqr;eps = 0.000000001;if (Math.Abs(y1 - y2) < eps && Math.Abs(y2 - y3) < eps){MessageBox.Show("INCIRCUM - F - Points are coincident !!");return false;}if (Math.Abs(y2 - y1) < eps){m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx2 = Convert.ToDouble((x2 + x3) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((x2 + x1) / 2.0);yc = Convert.ToDouble(m2 * (xc - mx2) + my2);}else if (Math.Abs(y3 - y2) < eps){m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);xc = Convert.ToDouble((x3 + x2) / 2.0);yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}else{m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);mx2 = Convert.ToDouble((x2 + x3) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2));yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}dx = (Convert.ToDouble(x2) - Convert.ToDouble(xc));dy = (Convert.ToDouble(y2) - Convert.ToDouble(yc));rsqr = Convert.ToDouble(dx * dx + dy * dy);r = Convert.ToDouble(Math.Sqrt(rsqr));dx = Convert.ToDouble(xp - xc);dy = Convert.ToDouble(yp - yc);drsqr = Convert.ToDouble(dx * dx + dy * dy);if (drsqr <= rsqr){return true;}return false;}private int WhichSide(int xp, int yp, int x1, int y1, int x2, int y2){double equation;equation = ((Convert.ToDouble(yp) - Convert.ToDouble(y1)) * (Convert.ToDouble(x2) - Convert.ToDouble(x1))) - ((Convert.ToDouble(y2) - Convert.ToDouble(y1)) * (Convert.ToDouble(xp) - Convert.ToDouble(x1)));if (equation > 0){return -1;}else if (equation == 0){return 0;}else{return 1;}}public int Triangulate(int nvert){bool[] Complete = new bool[MaxTriangles];long[,] Edges = new long[3, MaxTriangles * 3 + 1];int Nedge;int xmin;int xmax;int ymin;int ymax;int xmid;int ymid;double dx;double dy;double dmax;int i;int j;int k;int ntri;double xc = 0.0;double yc = 0.0;double r = 0.0;bool inc;xmin = Vertex[1].x;ymin = Vertex[1].y;xmax = xmin;ymax = ymin;for (i = 2; i <= nvert; i++){if (Vertex[i].x < xmin){xmin = Vertex[i].x;}if (Vertex[i].x > xmax){xmax = Vertex[i].x;}if (Vertex[i].y < ymin){ymin = Vertex[i].y;}if (Vertex[i].y > ymax){ymax = Vertex[i].y;}}dx = Convert.ToDouble(xmax) - Convert.ToDouble(xmin);dy = Convert.ToDouble(ymax) - Convert.ToDouble(ymin);if (dx > dy){dmax = dx;}else{dmax = dy;}xmid = (xmax + xmin) / 2;ymid = (ymax + ymin) / 2;Vertex[nvert + 1].x = Convert.ToInt64(xmid - 2 * dmax);Vertex[nvert + 1].y = Convert.ToInt64(ymid - dmax);Vertex[nvert + 2].x = xmid;Vertex[nvert + 2].y = Convert.ToInt64(ymid + 2 * dmax);Vertex[nvert + 3].x = Convert.ToInt64(xmid + 2 * dmax);Vertex[nvert + 3].y = Convert.ToInt64(ymid - dmax);Triangle[1].vv0 = nvert + 1;Triangle[1].vv1 = nvert + 2;Triangle[1].vv2 = nvert + 3;Complete[1] = false;ntri = 1;for (i = 1; i <= nvert; i++){Nedge = 0;j = 0;do{j = j + 1;if (Complete[j] != true){inc = InCircle(Vertex[i].x, Vertex[i].y, Vertex[Triangle[j].vv0].x, Vertex[Triangle[j].vv0].y, Vertex[Triangle[j].vv1].x, Vertex[Triangle[j].vv1].y, Vertex[Triangle[j].vv2].x, Vertex[Triangle[j].vv2].y, xc, yc, r);if (inc){Edges[1, Nedge + 1] = Triangle[j].vv0;Edges[2, Nedge + 1] = Triangle[j].vv1;Edges[1, Nedge + 2] = Triangle[j].vv1;Edges[2, Nedge + 2] = Triangle[j].vv2;Edges[1, Nedge + 3] = Triangle[j].vv2;Edges[2, Nedge + 3] = Triangle[j].vv0;Nedge = Nedge + 3;Triangle[j].vv0 = Triangle[ntri].vv0;Triangle[j].vv1 = Triangle[ntri].vv1;Triangle[j].vv2 = Triangle[ntri].vv2;Complete[j] = Complete[ntri];j = j - 1;ntri = ntri - 1;}}}while (j < ntri);for (j = 1; j <= Nedge - 1; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){for (k = j + 1; k <= Nedge; k++){if (Edges[1, k] != 0 && Edges[2, k] != 0){if (Edges[1, j] == Edges[2, k]){if (Edges[2, j] == Edges[1, k]){Edges[1, j] = 0;Edges[2, j] = 0;Edges[1, k] = 0;Edges[2, k] = 0;}}}}}}for (j = 1; j <= Nedge; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){ntri = ntri + 1;Triangle[ntri].vv0 = Edges[1, j];Triangle[ntri].vv1 = Edges[2, j];Triangle[ntri].vv2 = i;Complete[ntri] = false;}}}i = 0;do{i = i + 1;if (Triangle[i].vv0 > nvert || Triangle[i].vv1 > nvert || Triangle[i].vv2 > nvert){Triangle[i].vv0 = Triangle[ntri].vv0;Triangle[i].vv1 = Triangle[ntri].vv1;Triangle[i].vv2 = Triangle[ntri].vv2;i = i - 1;ntri = ntri - 1;}}while (i < ntri);return ntri;}}
}

 ——————————————————————

POWER BY 315SOFT.COM &
TRUFFER.CN

这篇关于C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653324

相关文章

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点

C#中SortedSet的具体使用

《C#中SortedSet的具体使用》SortedSet是.NETFramework4.0引入的一个泛型集合类,它实现了一个自动排序的集合,内部使用红黑树数据结构来维护元素的有序性,下面就来介绍一下如... 目录基础概念主要特性创建和初始化基本创建方式自定义比较器基本操作添加和删除元素查询操作范围查询集合运

C# Opacity 不透明度的具体使用

《C#Opacity不透明度的具体使用》本文主要介绍了C#Opacity不透明度的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录WinFormsOpacity以下是一些使用Opacity属性的示例:设置窗体的透明度:设置按钮的透

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制