探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】

2024-01-28 08:44

本文主要是介绍探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 引言
    • 准备工作
    • 绘制基本旭日图
    • 调整颜色和样式
    • 添加交互功能
    • 定制标签和标签格式
    • 嵌套层级数据
    • 高级样式与自定义
    • 进阶主题:动态旭日图
    • 数据源扩展:外部JSON文件
    • 总结

引言

数据可视化在现代编程中扮演着重要的角色,而Pyecharts是Python中一个强大的图表库,可以轻松实现各种炫酷的数据可视化效果。其中,旭日图是一种展示层次结构数据的理想选择,通过不同的颜色和半径呈现数据的层级和关系。在本篇技术博客中,我们将深入探讨Pyecharts中绘制旭日图的多种参数,同时提供实用的代码示例,帮助你更好地利用这一功能。
在这里插入图片描述

准备工作

在开始之前,请确保你已经安装了Pyecharts库。如果没有安装,可以使用以下命令进行安装:

pip install pyecharts

绘制基本旭日图

首先,我们从最基本的旭日图开始,使用Pyecharts的Sunburst类。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"])
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="基本旭日图"))
sunburst.render("basic_sunburst.html")

在上述代码中,我们定义了一个简单的层级结构数据,然后使用Sunburst类绘制了基本的旭日图。radius参数用于设置旭日图的半径范围。
在这里插入图片描述

调整颜色和样式

为了让旭日图更具吸引力,我们可以调整颜色和样式。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="调整颜色和样式"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("styled_sunburst.html")

在这个例子中,我们使用了color_scheme参数来指定颜色方案,并通过legend_opts隐藏了图例。

添加交互功能

为了增强用户体验,我们可以添加一些交互功能,如数据提示和缩放。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="添加交互功能"),legend_opts=opts.LegendOpts(is_show=False),tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{b}: {c}"),toolbox_opts=opts.ToolboxOpts(is_show=True, feature={"saveAsImage": {}}),
)
sunburst.render("interactive_sunburst.html")

在这个例子中,我们通过tooltip_opts添加了数据提示,toolbox_opts增加了保存为图片的功能。

定制标签和标签格式

在旭日图中,标签对于传达信息非常重要。我们可以通过label_opts参数来定制标签的样式和格式。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("",data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="定制标签和标签格式"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("custom_label_sunburst.html")

在上述代码中,我们使用了label_opts参数来设置标签的格式和位置,通过formatter来自定义标签的显示内容。

嵌套层级数据

如果你的数据包含多个层级,你可以通过嵌套的方式表示。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A","children": [{"name": "A1", "value": 10},{"name": "A2", "value": 20},],},{"name": "B","children": [{"name": "B1", "value": 15},{"name": "B2", "value": 25},],},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="嵌套层级数据"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("nested_sunburst.html")

在这个例子中,我们通过嵌套层级的方式,更好地表达了数据之间的关系。
在这里插入图片描述

高级样式与自定义

如果你需要更高级的样式和自定义,可以进一步使用Pyecharts提供的丰富功能,如渐变色、阴影效果等。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("",data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),itemstyle_opts=opts.ItemStyleOpts(border_color="white",border_width=1,opacity=0.7,shadow_blur=10,shadow_color="rgba(120, 36, 50, 0.5)",),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="高级样式与自定义"))
sunburst.render("advanced_sunburst.html")

在这个例子中,我们通过itemstyle_opts参数实现了边框、透明度和阴影效果的自定义。
在这里插入图片描述

进阶主题:动态旭日图

在一些场景下,我们希望展示数据的动态变化,这时候可以借助Pyecharts的Timeline组件,创建一个动态的旭日图。

from pyecharts import options as opts
from pyecharts.charts import Sunburst, Timeline# 模拟多个时间点的数据
data_timeline = [{"time": "2023-01-01","data": {"name": "root","children": [{"name": "A", "value": 15},{"name": "B", "value": 25},{"name": "C", "value": 20},{"name": "D", "value": 30},],},},# 添加更多时间点的数据...
]timeline = Timeline()for time_data in data_timeline:sunburst = Sunburst()sunburst.add("",time_data['data']['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),)sunburst.set_global_opts(title_opts=opts.TitleOpts(title=f"动态旭日图 - {time_data['time']}"),legend_opts=opts.LegendOpts(is_show=False),)timeline.add(sunburst, time_data['time'])timeline.render("dynamic_sunburst.html")

在这个例子中,我们使用了Timeline组件,根据不同时间点的数据绘制了一系列动态的旭日图。这是一个强大的工具,使得你可以清晰地展示数据在时间轴上的演变过程。

数据源扩展:外部JSON文件

当数据较为庞大或需要动态加载时,可以将数据存储在外部JSON文件中,并通过读取文件的方式进行数据绑定。

import json
from pyecharts import options as opts
from pyecharts.charts import Sunburst# 从外部JSON文件读取数据
with open("data.json", "r", encoding="utf-8") as f:external_data = json.load(f)sunburst = Sunburst()
sunburst.add("",external_data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="外部JSON文件数据展示"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("external_data_sunburst.html")

在上述代码中,我们通过json.load方法读取了外部JSON文件中的数据,然后将其传递给Sunburst图表进行绘制。

总结

通过本文,你学会了如何使用Pyecharts绘制多种炫酷的旭日图,并深入了解了各种参数的用法。无论是基本的图形绘制,还是高级的样式定制,Pyecharts都提供了强大而灵活的工具,助力你创建令人印象深刻的数据可视化图表。希望这篇文章对你在数据可视化的学习和实践中有所帮助。

这篇关于探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653093

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错