【智能优化算法-灰狼算法】基于基于随机收敛因子和差分变异改进灰狼优化算法求解单目标优化问题附matlab代码

本文主要是介绍【智能优化算法-灰狼算法】基于基于随机收敛因子和差分变异改进灰狼优化算法求解单目标优化问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

针对基本灰狼优化算法在求解高维复杂优化问题时存在解精度低和易陷入局部最优的缺点,提出一种改进的灰狼优化算法.受粒子群优化算法的启发,设计一种收敛因子a随机动态调整策略以协调算法的全局勘探和局部开采能力;为了增强种群多样性和降低算法陷入局部最优的概率,受差分进化算法的启发,构建一种随机差分变异策略产生新个体.选取6个标准测试函数进行仿真实验.结果表明:在相同的适应度函数评价次数条件下,此算法在求解精度和收敛速度上均优于其他算法.

⛄ 部分代码

%___________________________________________________________________%

%  Grey Wold Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

    for i=1:size(Positions,1)  

        

       % Return back the search agents that go beyond the boundaries of the search space

        Flag4ub=Positions(i,:)>ub;

        Flag4lb=Positions(i,:)<lb;

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               

        

        % Calculate objective function for each search agent

        fitness=fobj(Positions(i,:));

        

        % Update Alpha, Beta, and Delta

        if fitness<Alpha_score 

            Alpha_score=fitness; % Update alpha

            Alpha_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness<Beta_score 

            Beta_score=fitness; % Update beta

            Beta_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 

            Delta_score=fitness; % Update delta

            Delta_pos=Positions(i,:);

        end

    end

    

    

    % a decreases linearly fron 2 to 0

     a=sin(((l*pi)/Max_iter)+pi/2)+1;

    % Update the Position of search agents including omegas

    for i=1:size(Positions,1)

        for j=1:size(Positions,2)     

                       

            r1=rand(); % r1 is a random number in [0,1]

            r2=rand(); % r2 is a random number in [0,1]

            

            A1=2*a*r1-a; % Equation (3.3)

            C1=2*r2; % Equation (3.4)

            

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                       

            r1=rand();

            r2=rand();

            

            A2=2*a*r1-a; % Equation (3.3)

            C2=2*r2; % Equation (3.4)

            

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       

            

            r1=rand();

            r2=rand(); 

            

            A3=2*a*r1-a; % Equation (3.3)

            C3=2*r2; % Equation (3.4)

            

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

            

            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

            

        end

    end

    l=l+1;    

    Convergence_curve(l)=Alpha_score;

end

⛄ 运行结果

⛄ 参考文献

[1]徐松金, 龙文. 基于随机收敛因子和差分变异的改进灰狼优化算法[J]. 科学技术与工程, 2018, 18(23):5.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

这篇关于【智能优化算法-灰狼算法】基于基于随机收敛因子和差分变异改进灰狼优化算法求解单目标优化问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652912

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.