深度学习-使用Labelimg数据标注

2024-01-28 06:44

本文主要是介绍深度学习-使用Labelimg数据标注,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据标注是计算机视觉和机器学习项目中至关重要的一步,而使用工具进行标注是提高效率的关键。本文介绍了LabelImg,一款常用的开源图像标注工具。用户可以在图像中方便而准确地标注目标区域,为训练机器学习模型提供高质量的标注数据。LabelImg已经成为研究者和开发者在计算机视觉项目中不可或缺的工具之一。


一、安装Labelimg

1、切换虚拟环境

为了确保 LabelImg 能够与项目环境兼容,首先需要切换到相应的虚拟环境。

例如,可以使用 conda 激活 yolov5 虚拟环境:

conda activate yolov5  #切换到yolov5虚拟环境

2、安装Labelimg

在虚拟环境中,通过 pip 安装 LabelImg:

pip install labelimg


二、打开Labelimg

在安装完成后,可以通过以下命令在命令行中打开 LabelImg:

labelimg  #在命令行中输入labelimg即可打开


三、进行图片标注

1、导入图片

通过 LabelImg 的 Open Dir 按键打开需要进行标注的图片所在的文件夹,文件夹内的图片会被自动导入,在右下角的框体里我们可以看到这些图片,从而选择它们进行标注。


2、切换为yolo模式

在 LabelImg 中,可以选择不同的标注模式。
切换到 yolo 模式有助于生成符合 yolo 模型训练需求的标注文件。


3、拖拽画框进行标注

使用鼠标在图像上拖拽画框,准确框选目标区域。
LabelImg 提供直观的界面和交互方式,使标注过程更加便捷。

为了训练的结果更加精准,我们需要更准确地标注。
在使用 LabelImg 进行拖拽画框进行标注时,需要注意一些事项:

注意点注意点描述
精准拖拽尽量保持拖拽画框的精准,确保框选的区域紧密贴合目标,以提高标注的准确性。
适当留白在框选目标时,适当留白目标周围,不要贴得太紧,以免过于靠近目标边缘导致模型难以学习。
避免遮挡注意避免目标被遮挡或部分遗漏。
标注的目的是为了让模型准确识别目标,因此要确保标注框完整地覆盖目标物体。
多边形标注对于不规则形状的目标,LabelImg支持多边形标注。
在需要的情况下,可以使用多边形标注工具进行更灵活的标注。
避免重叠避免在同一区域标注多个框,除非目标本身是多个紧密相连的部分。
重叠的标注可能导致模型难以解释目标的准确位置。
合理分割如果一个目标被遮挡或部分消失,可以尝试合理地将其分割为多个框。
合理的分割图片可以更好地捕捉目标的形状。
调整大小标注框的大小应该适当,不要过大也不要过小。确保框选的区域足够表达目标的特征。
标签一致性在整个数据集中,确保相同类别的目标都使用相同的标签,保持标签的一致性。

4、保存数据集txt文件

在完成图像标注后,保存数据集是至关重要的一步,这一步骤将产生一个包含框体和标签信息的数据集文件,为机器学习模型的训练提供了必要的输入。

点击 LabelImg 界面上方的 Save 按钮,或者使用快捷键 Ctrl + S,将触发保存数据集的操作。这个操作会在标注的图片文件夹目录下生成与图片文件同名的 txt 文件,该文件包含了每个框体的位置和对应标签的信息。

保存的txt文件的格式通常是每一行代表一个目标框,具体格式可能如下:

class x_center y_center width height

 其中:

  • class 表示目标的类别。
  • x_centery_center 是目标框中心的相对坐标。
  • widthheight 是目标框的相对宽度和高度。

这样的格式便于模型训练时读取和理解数据。在训练阶段,这些标注信息将被用来调整模型参数,使其能够准确地检测和识别相应类别的目标。

这些数据集文件包含框体和标签的信息,将在训练模型时被自动加载。使用 LabelImg,数据标注变得简单而高效,为计算机视觉项目提供了强大的支持。

这篇关于深度学习-使用Labelimg数据标注的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652789

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

关于Mybatis和JDBC的使用及区别

《关于Mybatis和JDBC的使用及区别》:本文主要介绍关于Mybatis和JDBC的使用及区别,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、JDBC1.1、流程1.2、优缺点2、MyBATis2.1、执行流程2.2、使用2.3、实现方式1、XML配置文件

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑