开源 | 哈佛大学九大自然语言处理开源项目(附论文)

2024-01-28 00:10

本文主要是介绍开源 | 哈佛大学九大自然语言处理开源项目(附论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

选自 Github

机器之心编译

参与:杜夏德、李泽南、吴攀

在这篇文章中,我们盘点了哈佛大学开源的 9 大有关自然语言处理的项目。虽然里面的代码是研究代码(通常还有一些使用的注意事项),但也已经得到了哈佛研究团队之外的产业组织的应用,其相关项目的证书请参阅对应的 repo。

1.Sequence-to-Sequence Learning with Attentional Neural Networks(使用注意神经网络的序列到序列学习)

项目地址:https://github.com/harvardnlp/seq2seq-attn

在带有(可选)注意(attention)的标准 seq2seq 模型的 Torch 实现中,其编码器 - 解码器(encoder-decoder)模型是 LSTM。编码器可以是一个双向 LSTM。此外还能在字符嵌入(character embeddings)上运行一个卷积神经网络然后再运行一个 highway network,从而将字符(而不是输入的词嵌入)作为输入来使用。

该注意模型来源于发表于 EMNLP 2015 大会上的论文《Effective Approaches to Attention-based Neural Machine Translation》。我们使用该论文中的带有输入 - 反馈方式的全局通用注意力模型( global-general-attention model with the input-feeding approach)。输入 - 反馈作为可选项,也可去掉。

其中的字符模型来源于 AAAI 2016 上的论文《Character-Aware Neural Language Models》。

2.Visual Analysis for State Changes in RNNs(用于 RNN 中状态变化的视觉分析)

项目地址:https://github.com/HendrikStrobelt/lstmvis

循环神经网络(RNN),尤其是 LSTM,是学习一个隐藏其序列输入表征的密集黑箱测试的序列处理的有效工具。对这些模型有更好理解的研究者已经研究了隐藏状态表征中随时间发生的变化,并注意到有些可以解释但噪声明显的模式。

我们提出的 LSTMV 是用在 RNN 中的一款视觉分析工具,其关注的重点是理解这些隐藏的状态动态。这个工具允许用户选择一个关于局部状态变化的假设输入范围,以将这些状态变化匹配到一个大数据库中类似的模式上,并将这些结果与它们的域(domain)的结构注释(structural annotations)进行比对。我们为这个工具提供了数据来分析数据集上特定的隐藏状态属性,包括嵌套、短语结构、和弦进程(chord progressions)并展示如何使用这个工具为进一步的统计分析来隔离模式。

3.CNN for Text Classification(用于文本分类的 CNN)

项目地址::https://github.com/harvardnlp/sent-conv-torch

这个代码用 GPU 在 Torch 中实现了 Kim(2014)的句子卷积代码。它复制了现有数据库中的结果,并允许在任意其它的文本数据库上训练模型。

4.Im2Markup

项目地址:https://github.com/harvardnlp/im2markup

在最近图像字幕生成和光学字符识别(OCR)研究进展的基础上,我们提出了一个通用的基于深度学习的系统来将图像反编译成标识性置标语言(presentational markup)。虽然这个任务在 OCR 中已经得到了充分研究,但是我们用的是完全不同的数据驱动的方法。我们的模型不需要任何潜在的标记语言知识,仅在真实世界的样本数据中进行端到端(end-to-end)的训练即可。这个模型实现了一个卷积网络,该网络将文本和布局识别(text and layout recognition)与一个基于注意的神经机器翻译系统串联起来。为了训练和评估这个模型,我们引入了一个与 LaTeX 标记语言配对的经过了真实世界渲染的数学表达式的新数据库,以及一个与 HTML 代码片段配对的网页的合成数据库。试验结果显示该系统在两个数据集的精确标记生成上非常有效。而一个标准特定域的 LaTeX OCR 系统的精确度能达到 25%,我们的模型准确再现了样本中 75% 的渲染的图像。

5.ABS: Abstractive Summarization  

项目地址:https://github.com/harvardnlp/NAMAS

该项目包含了来自以下论文的 Abs. 神经抽象摘要系统(neural abstractive summarization system)。

这里发布的代码可以:

提取摘要数据集

训练神经摘要模型

用 ROUGE 构建评估集

调试提取的特征

6.LSTM Character-Aware Language Model

项目地址:https://github.com/yoonkim/lstm-char-cnn

代码来自 AAAI 2016 论文《Character-Aware Neural Language Models》。

这是一个仅建立在字符输入上的一个神经语言模型(NLM)。预测还是在词水平上进行。当输入一个 LSTM 循环神经网络语言模型(RNN-LM)时,该模型在字符上启用了一个卷积神经网络(CNN)。也可选择让该 CNN 的输出通过一个 Highway Network,这能提升表现。

多数基础代码来源于 Andrej Karpathy 的字符 RNN 实现:https://github.com/karpathy/char-rnn。

7.Neural Coreference Resolution (神经指代消解)

项目地址:https://github.com/swiseman/nn_coref

神经指代模型(Neural Coref Models),在论文 Learning Global Features for Coreference Resolution(Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber, NAACL 2015)和 Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolution(Sam Wiseman, Alexander M. Rush, Stuart M. Shieber, and Jason Weston. ACL 2015)中有所描述。

8.PAD: Phrase-structure After Dependencies  

项目地址:https://github.com/ikekonglp/PAD

PAD 是一款免费软件;你可以遵照由 Free Software Foundation 公布的 GNU 宽通用公共许可来修改 / 重发它;也可以二版的许可,或者后面其他版本的许可(看你自己的选择)。

发布 PAD 是希望它能变得有用,但是我们并不担保;

你应该会收到一份连同这个程序的 GNU 通用公共许可证;如果没有,写信给 Free Software Foundation,地址是 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA。

目标:

依存分析器(dependency parsers)快速、精确,并可以产生易于解释的结果,短语结构分析虽然很便捷但在很多语言处理任务中需要输入。

该 PAD 分析器能产生依存分析后的词组(phrases-after-dependencies)。给它依存分析的输出,它将会产生优化的约束短语结构分析。

9. 安卓系统中的神经机器翻译

项目地址:https://github.com/harvardnlp/nmt-android

基于 Sequence-to-Sequence Learning with Attentional Neural Networks 项目: http://github.com/harvardnlp/seq2seq-attn。和一篇文献:

http://www.people.fas.harvard.edu/~yoonkim/data/emnlp_2016.pdf

神经机器翻译(NMT)在翻译中提供了统计方式之外的另一种方式,同时也更加简便。然而,如果想要达到有竞争力的表现,神经机器翻译模型会变得非常巨大。本论文中我们考虑了将知识提炼(knowledge distillation)方式(Bucila 等人,2006;Hinton 等人,2015)加入机器神经翻译中,以解决其体量问题,这种方式已在其他领域中被证明能够成功减小神经模型的尺寸。我们证明了适用于词级预测的标准知识提炼方式在神经机器翻译中是有效的,同时也介绍了两种新的序列级知识提炼方式,它们可以进一步提升性能。令人有些惊讶的是,这些方式可以消除对定向搜索(beam search)的需求(即使应用在原始教师模型(teacher model)上)。我们最好的学生模型(student model)在性能稍有损失的情况下运行速度比最好的教师模型速度快 10 倍。它同时大大优于没有知识提炼的基准模型,在贪婪解码(greedy decoding)/ 定向搜索中达到 4.2/1.7 的 BLEU。当学生模型应用了权重修剪(weight pruning)的知识提炼结果时,其参数相比教师模型小 13 倍,同时 BLEU 减少 0.4。

教程

如果你是 Torch 新手,我们准备了 NLP 机器学习研究生班 CS287 的一套教材。这些笔记是由 Sam Wiseman 和 Saketh Rama 准备的,你可以由此获得对 Torch 核心方面的基本了解,接着快速转向一些高级的话题,比如内存使用、神经网络模块的细节和循环神经网络。

© 本文由机器之心编译,转载请联系本公众号获得授权

✄ ------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@almosthuman.cn

投稿或寻求报道:editor@almosthuman.cn

广告 & 商务合作:bd@almosthuman.cn

转载于:https://my.oschina.net/airship/blog/1517707

这篇关于开源 | 哈佛大学九大自然语言处理开源项目(附论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651924

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事