Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1

2024-01-27 15:12

本文主要是介绍Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 为什么黑猫游戏的销售额会减少?

# 数据集

DAU : 每天至少来访问一次的用户数据

数据内容 数据类型 字段名

访问时间 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

DPU: 每天至少消费1日元的用户数据

数据内容 数据类型  字段名

消费日期 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

消费额 int(数值) Payment

INSTALL : 每个用户首次玩这个游戏的时间数据

数据内容 数据类型 字段名

首次使用的日期 string(字符串)

# 加载模块
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt # 导入数据
DAU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dau.csv")
DPU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dpu.csv")
INSTALL = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-install.csv")
# 将数据合并起来
data = DAU.merge(INSTALL,on='user_id')
data = pd.merge(data,DPU, on =['user_id','log_date'], how ='outer') # outer 外连接,保留两个数据集中所有的user_id, log_date
# 对数据进行处理
data.fillna(value=0, inplace =True)
# 剔除多余的列
data.drop(columns=['app_name_y','app_name'])
# 生成新的列,年月份数据
data['log_mon'] = data.log_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
data['install_mon'] = data.install_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
# 按月聚合统计每位人员的销售额
data_mon = data.groupby(['log_mon','user_id','install_mon']).payment.sum().reset_index()# 如果log_date 等于 install_date 则为新用户
data_mon['type'] = data_mon.apply(lambda x: '1' if x.log_mon == x.install_mon else '0', axis =1)
# 按月统计新老客户的销售额
data1 = data_mon.groupby(['log_mon','type'])['payment'].sum().reset_index(name='tot_payment')
data_pivot = pd.pivot_table(data1,values='tot_payment',index='log_mon',columns='type',aggfunc='sum').reset_index().rename(columns={'0':'老用户','1':'新用户'})
# data_pivot.index=('老用户','新用户')
data_pivot

# 堆积柱形图: 不同月份新老客户的销售额bar1 = plt.bar(np.arange(2),data_pivot.老用户,color='green',label='老用户',width=0.2,alpha=0.5)
bar2 = plt.bar(np.arange(2),data_pivot.新用户,color='grey',label='新用户',bottom=data_pivot.老用户,width=0.2,alpha=0.5)plt.bar_label(bar1,color='black')
plt.bar_label(bar2,color='black')# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额',fontsize=18)
plt.xticks(np.arange(2),data_pivot.log_mon)
plt.xlabel('月份',fontsize=12)
plt.ylabel('月销售额(日元)',fontsize=12)
plt.ylim(0,300000) # 修改刻度
plt.legend(loc='upper right',ncol=1)

# Note: 根据上图可知销售额的下降主要是优于新用户导致。
# 筛选新用户 且消费大于0的用户 的销售数据,对消费金额进行分组,统计不同组内的用户数
data_new = data_mon[(data_mon.type=='1')&(data_mon.payment>0)]
# 对数据进行分组
payment_min = data_new.payment.min()
payment_max = data_new.payment.max()print(payment_min, payment_max,data_new.user_id.count())
data_new['payment_group'] =pd.cut(data_new.payment,bins=[payment_min-1,1000,2000,3000,4000,5000,6000,7000,payment_max+1],labels=['1000日元一下','1000-2000','2000-3000','3000-4000','4000-5000','5000-6000','6000-7000','7000日元以上']) data_new_group = pd.pivot_table(data_new,values='user_id',index='payment_group',columns='log_mon',aggfunc='count').reset_index().rename(columns={'2013-06':'六月份','2013-07':'七月份'})
data_new_group

# 可视化
fig = plt.figure(figsize=(10,4)) 
bar1 = plt.bar(np.arange(8), height=data_new_group.六月份, color='blue', width=0.3,alpha = 0.5,label='2013年6月') # alpha 设置透明度
bar2 = plt.bar(np.arange(8)+0.3,height = data_new_group.七月份, color='green',width=0.3,alpha = 0.5,label='2013年7月')plt.legend()# 添加数据标注, 
plt.bar_label(bar1)
plt.bar_label(bar2)# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额度比较',fontsize=18)
plt.xticks(np.arange(8)+0.2,data_new_group.payment_group)
plt.ylabel('消费人数(人)',fontsize=12)
plt.ylim(0,40) # 修改刻度
plt.legend(loc='upper right',ncol=1)

 Note: 由图可知,本月消费2000以下的用户数量减少了。 (根据书本的样例数据计算的结果,并不能反应出销售额的下降是由于消费2000元以下的用户数减少,暂且认为是确实部分数据)

解决对策: 根据之间的假设 宣传活动减少,导致新客户数量减少,新客户带来了销售额的下降,建议恢复商业宣传活动到之前的水平。

Note: 在实际的工作中,还需要判断ROI,比较新用户的顾客终身价值和商业宣传活动的投入成本,再进行决策。

这篇关于Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650630

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、