Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1

2024-01-27 15:12

本文主要是介绍Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 为什么黑猫游戏的销售额会减少?

# 数据集

DAU : 每天至少来访问一次的用户数据

数据内容 数据类型 字段名

访问时间 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

DPU: 每天至少消费1日元的用户数据

数据内容 数据类型  字段名

消费日期 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

消费额 int(数值) Payment

INSTALL : 每个用户首次玩这个游戏的时间数据

数据内容 数据类型 字段名

首次使用的日期 string(字符串)

# 加载模块
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt # 导入数据
DAU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dau.csv")
DPU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dpu.csv")
INSTALL = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-install.csv")
# 将数据合并起来
data = DAU.merge(INSTALL,on='user_id')
data = pd.merge(data,DPU, on =['user_id','log_date'], how ='outer') # outer 外连接,保留两个数据集中所有的user_id, log_date
# 对数据进行处理
data.fillna(value=0, inplace =True)
# 剔除多余的列
data.drop(columns=['app_name_y','app_name'])
# 生成新的列,年月份数据
data['log_mon'] = data.log_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
data['install_mon'] = data.install_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
# 按月聚合统计每位人员的销售额
data_mon = data.groupby(['log_mon','user_id','install_mon']).payment.sum().reset_index()# 如果log_date 等于 install_date 则为新用户
data_mon['type'] = data_mon.apply(lambda x: '1' if x.log_mon == x.install_mon else '0', axis =1)
# 按月统计新老客户的销售额
data1 = data_mon.groupby(['log_mon','type'])['payment'].sum().reset_index(name='tot_payment')
data_pivot = pd.pivot_table(data1,values='tot_payment',index='log_mon',columns='type',aggfunc='sum').reset_index().rename(columns={'0':'老用户','1':'新用户'})
# data_pivot.index=('老用户','新用户')
data_pivot

# 堆积柱形图: 不同月份新老客户的销售额bar1 = plt.bar(np.arange(2),data_pivot.老用户,color='green',label='老用户',width=0.2,alpha=0.5)
bar2 = plt.bar(np.arange(2),data_pivot.新用户,color='grey',label='新用户',bottom=data_pivot.老用户,width=0.2,alpha=0.5)plt.bar_label(bar1,color='black')
plt.bar_label(bar2,color='black')# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额',fontsize=18)
plt.xticks(np.arange(2),data_pivot.log_mon)
plt.xlabel('月份',fontsize=12)
plt.ylabel('月销售额(日元)',fontsize=12)
plt.ylim(0,300000) # 修改刻度
plt.legend(loc='upper right',ncol=1)

# Note: 根据上图可知销售额的下降主要是优于新用户导致。
# 筛选新用户 且消费大于0的用户 的销售数据,对消费金额进行分组,统计不同组内的用户数
data_new = data_mon[(data_mon.type=='1')&(data_mon.payment>0)]
# 对数据进行分组
payment_min = data_new.payment.min()
payment_max = data_new.payment.max()print(payment_min, payment_max,data_new.user_id.count())
data_new['payment_group'] =pd.cut(data_new.payment,bins=[payment_min-1,1000,2000,3000,4000,5000,6000,7000,payment_max+1],labels=['1000日元一下','1000-2000','2000-3000','3000-4000','4000-5000','5000-6000','6000-7000','7000日元以上']) data_new_group = pd.pivot_table(data_new,values='user_id',index='payment_group',columns='log_mon',aggfunc='count').reset_index().rename(columns={'2013-06':'六月份','2013-07':'七月份'})
data_new_group

# 可视化
fig = plt.figure(figsize=(10,4)) 
bar1 = plt.bar(np.arange(8), height=data_new_group.六月份, color='blue', width=0.3,alpha = 0.5,label='2013年6月') # alpha 设置透明度
bar2 = plt.bar(np.arange(8)+0.3,height = data_new_group.七月份, color='green',width=0.3,alpha = 0.5,label='2013年7月')plt.legend()# 添加数据标注, 
plt.bar_label(bar1)
plt.bar_label(bar2)# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额度比较',fontsize=18)
plt.xticks(np.arange(8)+0.2,data_new_group.payment_group)
plt.ylabel('消费人数(人)',fontsize=12)
plt.ylim(0,40) # 修改刻度
plt.legend(loc='upper right',ncol=1)

 Note: 由图可知,本月消费2000以下的用户数量减少了。 (根据书本的样例数据计算的结果,并不能反应出销售额的下降是由于消费2000元以下的用户数减少,暂且认为是确实部分数据)

解决对策: 根据之间的假设 宣传活动减少,导致新客户数量减少,新客户带来了销售额的下降,建议恢复商业宣传活动到之前的水平。

Note: 在实际的工作中,还需要判断ROI,比较新用户的顾客终身价值和商业宣传活动的投入成本,再进行决策。

这篇关于Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650630

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright