陈磊-大数据风控:拍拍信的AI视角

2024-01-27 06:10

本文主要是介绍陈磊-大数据风控:拍拍信的AI视角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 普惠金融的发展遇到移动化的浪潮,使得消费信贷迎来了高速攀升期,同时也给风控带来了巨大的挑战,即在额度区间广、借贷频次高、客群下沉情况下,如    何实现风险可控、差异化定价、快速审批。幸而大数据和AI技术使得这一切变为可能,拍拍信一直在做这方面的探索,旨在整合数据资源、充分发掘数据潜在  价值,帮助金融机构伙伴搭建和优化风控系统,本次陈磊将分享相关的实践经验和落地案例。

当前消费金融规模持续增长,风险控制的挑战也与日俱增。

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

陈磊老师现场分享

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

请参见一个风控系统的雏形框架,涵盖了用户贷前和贷后的流程。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

信息是为决策提供主要支撑。在信贷业务中,信息四要素是姓名、身份证、手机号、银行卡号。

比如在信息采集上,我们会用AI的技术来提取相关信息,比如OCR,用拍照的方式来提供身份证、银行卡号的信息。这样做的优点显而易见——提高用户体验,效率快,避免伪造的情况。

整个闭环模式中,我们会根据不同的客户发起不同的策略,对于优质客户会提高额度,同时我们也会避免不良资产导致坏账而采取措施。

风险流程就是一个数据的流程,包含数据的采集,消化、回收、落地。

离开数据,风控就是无水之源。

传统的风控数据就是征信类的数据,很显然,这是远远不够的。那么新型时代的发展也让我们有新的思考,有哪些数据可以为我们的风控作补充。

理想化的数据就是覆盖率高,又和风险高度相关的。

这里我们借用金字塔模式来介绍的可用数据:


640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

我们在数据大爆炸的年代,什么样的数据都可以使用。

但是怎么使用,确实一个挑战。

这些挑战来源于以下几个维度:

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

在传统银行的风控体系中,无论是采用机器学习,还是人工标记,都需要专家来看怎么去做,如何做才能发挥作用。

鉴于特征提取都是以人为主,这就难免会有局限性,很多高维度、宽广度的数据衍生出来新的特征就很难用经验进行捕捉。 

下图是google在使用的一个专家+机器的特征工程模型框架:

  • 左边是比较明显的广度特征,专家可以凭经验直接提取

  • 中间广度加深度模型,一些不易解读的数据需要加工重构才能得以解读

  • 右面是需要深层挖掘、层层解析后才会出来的特征

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

下面是一份团案信息图谱的案例:

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

信息图谱在业务上的所反映的问题,在于最原始的出发点是什么, 什么形式关联,在关联上有什么途径。一层关联比较简单,怎样能够发现多层关联才更为关键。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

从聚合数据的输出与查询,可以看出一步关联与二次关联的数据联系。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

而更深层次的特征查询,能对关系网络形态位置,把非结构化的关系网络转化为一般模型可以能吸收并消化的特征向量,从而检测到异常客户。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

以上讲了很多特征提取。下面是阐述如何落地,从图中模型可以看出,主要流程是对不同的数据源做不同的数据提取,抽象到几个风险因子,进而提炼出综合风险指数,化繁为简。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

在风控体系中,我们追求准确性,同时也强调健壮性。

准确性是指特征的抽象与提取,那么健壮性就是指时间维度上的有效性、场景迁移的可扩展性。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

原文发布时间为:2017-10-24

本文作者:陈磊

本文来自云栖社区合作伙伴“中生代技术”,了解相关信息可以关注“中生代技术”微信公众号

这篇关于陈磊-大数据风控:拍拍信的AI视角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649285

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I