陈磊-大数据风控:拍拍信的AI视角

2024-01-27 06:10

本文主要是介绍陈磊-大数据风控:拍拍信的AI视角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 普惠金融的发展遇到移动化的浪潮,使得消费信贷迎来了高速攀升期,同时也给风控带来了巨大的挑战,即在额度区间广、借贷频次高、客群下沉情况下,如    何实现风险可控、差异化定价、快速审批。幸而大数据和AI技术使得这一切变为可能,拍拍信一直在做这方面的探索,旨在整合数据资源、充分发掘数据潜在  价值,帮助金融机构伙伴搭建和优化风控系统,本次陈磊将分享相关的实践经验和落地案例。

当前消费金融规模持续增长,风险控制的挑战也与日俱增。

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

陈磊老师现场分享

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

请参见一个风控系统的雏形框架,涵盖了用户贷前和贷后的流程。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

信息是为决策提供主要支撑。在信贷业务中,信息四要素是姓名、身份证、手机号、银行卡号。

比如在信息采集上,我们会用AI的技术来提取相关信息,比如OCR,用拍照的方式来提供身份证、银行卡号的信息。这样做的优点显而易见——提高用户体验,效率快,避免伪造的情况。

整个闭环模式中,我们会根据不同的客户发起不同的策略,对于优质客户会提高额度,同时我们也会避免不良资产导致坏账而采取措施。

风险流程就是一个数据的流程,包含数据的采集,消化、回收、落地。

离开数据,风控就是无水之源。

传统的风控数据就是征信类的数据,很显然,这是远远不够的。那么新型时代的发展也让我们有新的思考,有哪些数据可以为我们的风控作补充。

理想化的数据就是覆盖率高,又和风险高度相关的。

这里我们借用金字塔模式来介绍的可用数据:


640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

我们在数据大爆炸的年代,什么样的数据都可以使用。

但是怎么使用,确实一个挑战。

这些挑战来源于以下几个维度:

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

在传统银行的风控体系中,无论是采用机器学习,还是人工标记,都需要专家来看怎么去做,如何做才能发挥作用。

鉴于特征提取都是以人为主,这就难免会有局限性,很多高维度、宽广度的数据衍生出来新的特征就很难用经验进行捕捉。 

下图是google在使用的一个专家+机器的特征工程模型框架:

  • 左边是比较明显的广度特征,专家可以凭经验直接提取

  • 中间广度加深度模型,一些不易解读的数据需要加工重构才能得以解读

  • 右面是需要深层挖掘、层层解析后才会出来的特征

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

下面是一份团案信息图谱的案例:

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

信息图谱在业务上的所反映的问题,在于最原始的出发点是什么, 什么形式关联,在关联上有什么途径。一层关联比较简单,怎样能够发现多层关联才更为关键。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

从聚合数据的输出与查询,可以看出一步关联与二次关联的数据联系。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

而更深层次的特征查询,能对关系网络形态位置,把非结构化的关系网络转化为一般模型可以能吸收并消化的特征向量,从而检测到异常客户。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

以上讲了很多特征提取。下面是阐述如何落地,从图中模型可以看出,主要流程是对不同的数据源做不同的数据提取,抽象到几个风险因子,进而提炼出综合风险指数,化繁为简。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

在风控体系中,我们追求准确性,同时也强调健壮性。

准确性是指特征的抽象与提取,那么健壮性就是指时间维度上的有效性、场景迁移的可扩展性。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

原文发布时间为:2017-10-24

本文作者:陈磊

本文来自云栖社区合作伙伴“中生代技术”,了解相关信息可以关注“中生代技术”微信公众号

这篇关于陈磊-大数据风控:拍拍信的AI视角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_33810302/article/details/90338221
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/649285

相关文章

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

Java如何根据word模板导出数据

《Java如何根据word模板导出数据》这篇文章主要为大家详细介绍了Java如何实现根据word模板导出数据,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... pom.XML文件导入依赖 <dependency> <groupId>cn.afterturn</groupId>

Python实现获取带合并单元格的表格数据

《Python实现获取带合并单元格的表格数据》由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,所以本文我们就来聊聊如何使用Python实现获取带合并单元格的表格数据吧... 由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,现将将封装成类,并通过调用list_exc

Mysql数据库中数据的操作CRUD详解

《Mysql数据库中数据的操作CRUD详解》:本文主要介绍Mysql数据库中数据的操作(CRUD),详细描述对Mysql数据库中数据的操作(CRUD),包括插入、修改、删除数据,还有查询数据,包括... 目录一、插入数据(insert)1.插入数据的语法2.注意事项二、修改数据(update)1.语法2.有

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R