基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码)

本文主要是介绍基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型介绍

移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。
在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

差分进化算法(Differential Evolution Algorithm,DE)是一种全局优化算法,它基于群体的启发式搜索。每个个体对应一个解向量,DE的进化流程包括变异、杂交和选择操作。与遗传算法相比,差分进化算法的操作定义有所不同,但整体思想相似。

差分进化算法的描述如下:

  1. 初始化种群,随机生成一组解向量。
  2. 变异操作:选择三个不同的个体,通过变异公式将它们融合成一个变异解。
  3. 交叉操作:将变异解的每个参数与原解的对应参数进行比较,根据一定概率选择新解或旧解的值,形成交叉解。
  4. 选择操作:将交叉解与原解进行比较,选择较优的解作为下一次循环的解。
  5. 重复进行2-4步骤,直到满足停止条件(例如达到最大迭代次数或找到满意的解)。

差分进化算法相对于遗传算法的优势在于简单易实现,但也有很多变种和改进方法,可以根据具体情况选择适合的算法。

2.1部分MATLAB代码

close all
clear 
clc
dbstop if all error
t=1;
for NP=50:50:300
para = parametersetting(NP);
para.MaxFEs =6000;%最大迭代次数
Result(t)=Compute(NP,para);
t=t+1;
end
QQ=50:50:300;
LenG={};
StrCor={'r-','g--','b-','c-','m--','k-.','y-'};
figure
for i=1:t-1plot(Result(i).FitCurve,StrCor{i},'linewidth',3)hold onLenG{i}=['N=' num2str(QQ(i))];Data(i)=Result(i).FitCurve(end);
end
legend(LenG)
xlabel('FEs')
ylabel('Token')figure
bar(Data)
hold on
plot(Data,'r-o','linewidth',3)
set(gca,'xtick',1:1:t-1);
set(gca,'XTickLabel',LenG)
ylabel('Token')

2.2部分结果

当矿工数量为50 100 150 200 250 300 350时:所有矿工的利润随迭代次数的变化如下图所示
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
当矿工数量为50 时,差分进化算法得到的最优策略

1.70961903063870	0.915057108482030
1.97884581710515	0.136309993850076
1.82063040644361	0.475380964903532
1.43793030306619	0.714888695101324
1.82063040644361	0.900636150747992
1.61403687280477	0.230326490177402
1.44882104170844	0.475380964903532
1.92948288208559	0.679024405084065
1.97217203090381	0.475380964903532
1.89759336207038	0.230000959720043
1.84465608318310	0.577481991007684
1.88386265861916	0.403219304807995
1.98275518824349	0.184344657691976
1.88386265861916	0.690069920918526
1.99454958480856	0.714888695101324
1.64205969743127	0.154575948291039
1.92820145682232	0.738160805429999
1.97531511718751	0.486581365313851
1.89124702129147	0.998483429338209
1.85753262962595	0.784929891371303
0.206794357912299	0.475380964903532
1.98519754174442	0.625966057957844
1.95031384568391	0.890794551305381
1.63613228590527	0.757641108127655
1.58453437629969	0.572035284258508
1.95992990908977	0.588978363106915
1.99454958480856	0.157923330009538
1.87752509446173	0.861874778071472
1.73388961758303	0.0182505268364460
1.97884581710515	0.679546185110974
1.72577419634882	0.733875154051102
1.92979930893703	0.845620688312287
1.81981689329417	0.475380964903532
1.85753262962595	0.358725775264239
1.98275518824349	0.820915129741387
1.88386265861916	0.890794551305381
1.96549917117933	0.403219304807995
1.64287348500743	0.960178855853379
1.66476223036004	0.836742870036493
1.82259751216598	0.588978363106915
1.65625788695821	0.0534368180687056
1.99019691658474	0.0783551639914413
1.96083706050509	0.676355368865015
1.94280042487603	0.0425319119217820
1.92820145682232	0.958717191748582
1.92948288208559	0.739401704264659
1.97181148757610	0.619487787865644
1.83599108308744	0.921117032842475
0.796709687090485	0.626280644353691
1.95852658388316	0.0203334852718414

三、完整MATLAB代码

这篇关于基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/648241

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum