逆元相关知识点、求法(快速幂,拓展欧几里得,线性算法,阶乘的逆元)及拓展欧几里得算法的应用

本文主要是介绍逆元相关知识点、求法(快速幂,拓展欧几里得,线性算法,阶乘的逆元)及拓展欧几里得算法的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概念:

若xy≡1 (mod p),且gcd(x,p)=1(gcd函数是求x,y的最大公约数),则称x关于模p的乘法逆元为y。
那么除以y相当于乘以x(模p情况下)。值得注意的是x
(y+k*p)≡1(mod p),逆元不止一个,求最小的就可以;

几个定理or算法:

1.费马小定理:x^(p-1) ≡1 (mod p),p为素数,x不为p的倍数,若x为p的倍数则x^p ≡p (mod p)。那么当gcd(x,p)=1时,x * x^(p-2) ≡ 1(mod p),即x关于模p的逆元为x^(p-2)。则快速幂可求得逆元。

2.欧拉定理:a^φ(n)≡1(mod n) ,gcd(a,n)=1,函数φ(n)求数1到n与n互质的数的个数,当n为素数p的时候则为费马小定理。

3.欧几里得算法:即辗转相除法。

4.扩展欧几里得算法:已知整数a, b一定可以求解一组x,y(整数),使它们满足贝祖等式: ax+by = gcd(a, b) =d。

5 贝祖定理,方程ax+by=c有整数解的条件是gcd(a,b) | c。

用法:
1)这个算法可以用来求已知a,b的二元一次方程ax+by =z的整数解。但是前提是gcd(a,b) | z,否则没有整数解。(增加一个判断,例题POJ1061青蛙的约会)

2) 还可以用来求乘法的逆元a∗x≡1(mod p)—>a∗x+y∗p=1—>a∗x+b∗y=1(把p换成b),那么x是a关于b( p )的乘法逆元,y是b( p )的关于a的乘法逆元。(gcd(a*x,b)=1,b=p)

然而无论是用来求整数解还是求逆元都要对贝祖方程求解。

具体求法,代码及例题

拓展欧几里得算法:

1 求法

首先要对贝祖方程进行求解:
1)当b=0时,gcd(a,b)=a , ax+by=a–>x=1,y=0
2) 当b!=0时,
设方程1:ax+by=gcd(a,b),
方程2:bx1+(a%b)x1=gcd(b,a%b)
由欧几里得算法可得gcd(a,b)=gcd(b,a%b)=…=gcd(c,0) (///欧几里得算法的递推过程,c为a,b的最大公约数)
那么ax+by=bx1+(a-a/b*b)y1—>ax+by=ay1+b(x1-a/by1)—>x=y1 , y=x1-a/by1,由此我们可以知道x,y的解可由下一个x1,y1的解的得到,而递归到最后时,b=0,gcd(a,b)=a , ax+by=a–>x=1,y=0,这个时候x,y的值根据x=y1 , y=x1-a/by1一层一层的往回带,最后可以得到初始的x,y值。

2 代码:

typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{if(a==0&&b==0) return -1;///注意这种极端情况if(b==0){x=1,y=0;return a;}int r=exgcd(b

这篇关于逆元相关知识点、求法(快速幂,拓展欧几里得,线性算法,阶乘的逆元)及拓展欧几里得算法的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646128

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页