基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)

本文主要是介绍基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型简介

边缘计算资源调度优化模型是为了解决边缘计算场景下的资源分配和任务调度问题而提出的一种数学模型。该模型旨在通过优化算法来实现资源的有效利用和任务的高效执行,以提高边缘计算系统的性能和用户的服务体验。

在边缘计算资源调度优化模型中,可以考虑以下几个方面的因素:

  1. 资源异构性:边缘计算节点通常具有不同的处理能力、存储容量和网络带宽等资源。模型需要考虑这些异构性,以便合理分配任务和资源。

  2. 任务特性:不同的任务可能对资源的需求不同,例如计算密集型任务需要更多的处理能力,而数据密集型任务需要更多的存储容量。模型需要根据任务的特性进行任务调度和资源分配。

  3. 优化指标:模型需要定义适当的优化指标,以衡量资源调度和任务分配的效果。常见的优化指标包括任务完成时间、资源利用率、能耗等。

  4. 约束条件:模型需要考虑各种约束条件,例如边缘节点的能力限制、任务之间的依赖关系等。这些约束条件将影响资源调度和任务分配的决策。

通过建立边缘计算资源调度优化模型,可以利用数学规划、排队模型、状态转移模型等方法进行理论分析、性能对比和仿真验证。这些方法可以帮助评估不同调度算法的性能和可靠性,并为寻找最优解提供参考。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 150;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为150时:所有矿工的利润随迭代次数的变化如下图所示

在这里插入图片描述

算法得到的每个矿工的资源分配策略:

1.99412153757286	0.213639696936330
1.99719974562881	0.0135018811815468
1.99030731177272	0.839589872496645
1.98091882575326	0.380799781071672
1.99963936979768	0.916345461814080
1.99742226782594	0.316956722548928
1.99927530876850	0.0281535756344704
1.99504617462500	0.0830259682579953
1.99793690177606	0.0349084362471747
1.99802352959078	0.793679089176611
1.99963069326009	0.0275442218097952
1.99889944329012	0.197317485876760
1.99691390897909	0.286247343838041
1.99819750062006	0.388661772801486
1.96109031597808	0.0896261986840417
1.99537185599260	0.124588859917425
1.99893034952111	0.228362573215916
1.98110948100446	0.0846730229500122
1.96348109188453	0.0195168036245180
1.99946104629762	0.0195168036245180
1.99927530876850	0.0519136656495319
1.98477932268626	0.0830259682579953
1.99965025571609	0.588024469787229
1.99018355288023	0.736721605905127
1.99704688863079	0.160264752245246
1.98344425548849	0.113311931134876
1.98562956204741	0.267606706863208
1.97341509692747	0.0195168036245180
1.99704688863079	0.0929880951254843
1.99240257910290	0.0258015285802723
1.99775818928565	0.587297835715809
1.99879731203364	0.124588859917425
1.99707106598800	0.167453510257214
1.99828751473808	0.344603587153533
1.99114427094461	0.112953438966818
1.99637588470065	0.124588859917425
1.99462677705535	0.144059235571490
1.99940590685003	0.306982030615923
1.98551770270590	0.135350279025327
1.98478320251882	0.145731144009149
1.99987081676184	0.115749351098812
1.97339720731578	0.548334927863824
1.99707106598800	0.227627407005210
1.99306057744781	0.166835729361333
1.99719974562881	0.869989908833790
1.99336465582306	0.868854351077229
1.97112087416574	0.909877516905499
1.99704688863079	0.195678775259336
1.99361611660357	0.0195168036245180
1.99924960684812	0.0786223439696734
1.99805463994861	0.160535285872813
1.99796718193098	0.160729109533688
1.99802145247659	0.357655783257472
1.99822489403769	0.193112802360227
1.99441945135259	0.489474757635119
1.98873078218780	0.125679034372269
1.99707106598800	0.159531501829776
1.99893034952111	0.695217320422736
1.99601366614865	0.224719711472197
1.99742226782594	0.306982030615923
1.99704688863079	0.0511681723352714
1.95054065027596	0.0329562153408647
1.99617724103491	0.565636649612600
1.99704688863079	0.695217320422736
1.99707106598800	0.379634755669634
1.96231178988297	0.0286714818205358
1.99601366614865	0.327581206701412
1.99813967011449	0.388917625763320
1.99842908553795	0.145731144009149
1.99793690177606	0.352998651765789
1.99749744785110	0.447463497671282
1.99742226782594	0.559236379141531
1.99704688863079	0.595900122289976
1.98649667458916	0.111500819942811
1.99441944900560	0.128627225719388
1.99761532908333	0.168684305689187
1.99704688863079	0.0689534245390798
1.99963069326009	0.275368036933114
1.99707106598800	0.199334841452843
1.99939400306292	0.607283821888828
1.99783468733844	0.239153501911200
1.99704688863079	0.0707497674932641
1.99147840234302	0.911114830018717
1.99479721083810	0.316503090967020
1.99856708512974	0.321294543563116
1.99963069326009	0.0542204755761725
1.99704688863079	0.0113722838765553
1.99856708512974	0.853882597012484
1.99704688863079	0.0307153437364726
1.98842860848110	0.160729109533688
1.99686371640812	0.476864675140650
1.98875437698640	0.105523423165292
1.99867080315478	0.0231594336150387
1.99944410836304	0.0302833986026322
1.99401589786631	0.128627225719388
1.99876140662821	0.116500732389848
1.99629517961257	0.674464752659880
1.99370463757934	0.321294543563116
1.97964223102991	0.114256738846526
1.99856708512974	0.457725876070183
1.99707106598800	0.0337671327424851
1.99793690177606	0.0195168036245180
1.97580590335981	0.0177682246732739
1.99987081676184	0.0989507558819646
1.99352800575763	0.133205158731482
1.99692415173601	0.418832868597602
1.99617724103491	0.228290835776622
1.99796718193098	0.0743630970527058
1.99560412058417	0.778337847707958
1.99456802582904	0.343130865247205
1.99761532908333	0.0719456438187934
1.91234128050033	0.114056617749879
1.99842908553795	0.348727429788241
1.99763505349643	0.239153501911200
1.91790129062425	0.0195168036245180
1.99856708512974	0.219554199825291
1.99952848643763	0.131829874479961
1.99704688863079	0.116500732389848
1.99704688863079	0.0910214690016486
1.95806288783774	0.0117840673751565
1.99631435309204	0.213873465779684
1.95846867958255	0.0797481523171234
1.99692415173601	0.136230639526073
1.99617724103491	0.125679034372269
1.99707106598800	0.742727201266903
1.99456802582904	0.255163553653860
1.99234901527462	0.233657683989557
1.99240257910290	0.0517958289602273
1.96817025807002	0.0135018811815468
1.98182478730626	0.0513471606647600
1.99704688863079	0.461252651847447
1.99598481467818	0.331774111870895
1.97998911344444	0.0830259682579953
1.99987081676184	0.123571228411066
1.99704688863079	0.415670858474310
1.99456802582904	0.144722532505212
1.99704688863079	0.0978991710579884
1.94424824361259	0.0758363328327892
1.98847429288657	0.181132711754597
1.99704688863079	0.0490614501266261
1.98653885023645	0.0512485009352284
1.99038354161480	0.0258015285802723
1.93327333608551	0.0258015285802723
1.99977452274523	0.0882565614113161
1.99860606263000	0.0486702562377412
1.99494747408547	0.0567647288415154
1.94154702342798	0.0552663163078567
1.64839222782841	0.0135018811815468
1.96963677254490	0.0258015285802723

三、完整MATLAB代码

这篇关于基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645191

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代