基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)

本文主要是介绍基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型简介

边缘计算资源调度优化模型是为了解决边缘计算场景下的资源分配和任务调度问题而提出的一种数学模型。该模型旨在通过优化算法来实现资源的有效利用和任务的高效执行,以提高边缘计算系统的性能和用户的服务体验。

在边缘计算资源调度优化模型中,可以考虑以下几个方面的因素:

  1. 资源异构性:边缘计算节点通常具有不同的处理能力、存储容量和网络带宽等资源。模型需要考虑这些异构性,以便合理分配任务和资源。

  2. 任务特性:不同的任务可能对资源的需求不同,例如计算密集型任务需要更多的处理能力,而数据密集型任务需要更多的存储容量。模型需要根据任务的特性进行任务调度和资源分配。

  3. 优化指标:模型需要定义适当的优化指标,以衡量资源调度和任务分配的效果。常见的优化指标包括任务完成时间、资源利用率、能耗等。

  4. 约束条件:模型需要考虑各种约束条件,例如边缘节点的能力限制、任务之间的依赖关系等。这些约束条件将影响资源调度和任务分配的决策。

通过建立边缘计算资源调度优化模型,可以利用数学规划、排队模型、状态转移模型等方法进行理论分析、性能对比和仿真验证。这些方法可以帮助评估不同调度算法的性能和可靠性,并为寻找最优解提供参考。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 150;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为150时:所有矿工的利润随迭代次数的变化如下图所示

在这里插入图片描述

算法得到的每个矿工的资源分配策略:

1.99412153757286	0.213639696936330
1.99719974562881	0.0135018811815468
1.99030731177272	0.839589872496645
1.98091882575326	0.380799781071672
1.99963936979768	0.916345461814080
1.99742226782594	0.316956722548928
1.99927530876850	0.0281535756344704
1.99504617462500	0.0830259682579953
1.99793690177606	0.0349084362471747
1.99802352959078	0.793679089176611
1.99963069326009	0.0275442218097952
1.99889944329012	0.197317485876760
1.99691390897909	0.286247343838041
1.99819750062006	0.388661772801486
1.96109031597808	0.0896261986840417
1.99537185599260	0.124588859917425
1.99893034952111	0.228362573215916
1.98110948100446	0.0846730229500122
1.96348109188453	0.0195168036245180
1.99946104629762	0.0195168036245180
1.99927530876850	0.0519136656495319
1.98477932268626	0.0830259682579953
1.99965025571609	0.588024469787229
1.99018355288023	0.736721605905127
1.99704688863079	0.160264752245246
1.98344425548849	0.113311931134876
1.98562956204741	0.267606706863208
1.97341509692747	0.0195168036245180
1.99704688863079	0.0929880951254843
1.99240257910290	0.0258015285802723
1.99775818928565	0.587297835715809
1.99879731203364	0.124588859917425
1.99707106598800	0.167453510257214
1.99828751473808	0.344603587153533
1.99114427094461	0.112953438966818
1.99637588470065	0.124588859917425
1.99462677705535	0.144059235571490
1.99940590685003	0.306982030615923
1.98551770270590	0.135350279025327
1.98478320251882	0.145731144009149
1.99987081676184	0.115749351098812
1.97339720731578	0.548334927863824
1.99707106598800	0.227627407005210
1.99306057744781	0.166835729361333
1.99719974562881	0.869989908833790
1.99336465582306	0.868854351077229
1.97112087416574	0.909877516905499
1.99704688863079	0.195678775259336
1.99361611660357	0.0195168036245180
1.99924960684812	0.0786223439696734
1.99805463994861	0.160535285872813
1.99796718193098	0.160729109533688
1.99802145247659	0.357655783257472
1.99822489403769	0.193112802360227
1.99441945135259	0.489474757635119
1.98873078218780	0.125679034372269
1.99707106598800	0.159531501829776
1.99893034952111	0.695217320422736
1.99601366614865	0.224719711472197
1.99742226782594	0.306982030615923
1.99704688863079	0.0511681723352714
1.95054065027596	0.0329562153408647
1.99617724103491	0.565636649612600
1.99704688863079	0.695217320422736
1.99707106598800	0.379634755669634
1.96231178988297	0.0286714818205358
1.99601366614865	0.327581206701412
1.99813967011449	0.388917625763320
1.99842908553795	0.145731144009149
1.99793690177606	0.352998651765789
1.99749744785110	0.447463497671282
1.99742226782594	0.559236379141531
1.99704688863079	0.595900122289976
1.98649667458916	0.111500819942811
1.99441944900560	0.128627225719388
1.99761532908333	0.168684305689187
1.99704688863079	0.0689534245390798
1.99963069326009	0.275368036933114
1.99707106598800	0.199334841452843
1.99939400306292	0.607283821888828
1.99783468733844	0.239153501911200
1.99704688863079	0.0707497674932641
1.99147840234302	0.911114830018717
1.99479721083810	0.316503090967020
1.99856708512974	0.321294543563116
1.99963069326009	0.0542204755761725
1.99704688863079	0.0113722838765553
1.99856708512974	0.853882597012484
1.99704688863079	0.0307153437364726
1.98842860848110	0.160729109533688
1.99686371640812	0.476864675140650
1.98875437698640	0.105523423165292
1.99867080315478	0.0231594336150387
1.99944410836304	0.0302833986026322
1.99401589786631	0.128627225719388
1.99876140662821	0.116500732389848
1.99629517961257	0.674464752659880
1.99370463757934	0.321294543563116
1.97964223102991	0.114256738846526
1.99856708512974	0.457725876070183
1.99707106598800	0.0337671327424851
1.99793690177606	0.0195168036245180
1.97580590335981	0.0177682246732739
1.99987081676184	0.0989507558819646
1.99352800575763	0.133205158731482
1.99692415173601	0.418832868597602
1.99617724103491	0.228290835776622
1.99796718193098	0.0743630970527058
1.99560412058417	0.778337847707958
1.99456802582904	0.343130865247205
1.99761532908333	0.0719456438187934
1.91234128050033	0.114056617749879
1.99842908553795	0.348727429788241
1.99763505349643	0.239153501911200
1.91790129062425	0.0195168036245180
1.99856708512974	0.219554199825291
1.99952848643763	0.131829874479961
1.99704688863079	0.116500732389848
1.99704688863079	0.0910214690016486
1.95806288783774	0.0117840673751565
1.99631435309204	0.213873465779684
1.95846867958255	0.0797481523171234
1.99692415173601	0.136230639526073
1.99617724103491	0.125679034372269
1.99707106598800	0.742727201266903
1.99456802582904	0.255163553653860
1.99234901527462	0.233657683989557
1.99240257910290	0.0517958289602273
1.96817025807002	0.0135018811815468
1.98182478730626	0.0513471606647600
1.99704688863079	0.461252651847447
1.99598481467818	0.331774111870895
1.97998911344444	0.0830259682579953
1.99987081676184	0.123571228411066
1.99704688863079	0.415670858474310
1.99456802582904	0.144722532505212
1.99704688863079	0.0978991710579884
1.94424824361259	0.0758363328327892
1.98847429288657	0.181132711754597
1.99704688863079	0.0490614501266261
1.98653885023645	0.0512485009352284
1.99038354161480	0.0258015285802723
1.93327333608551	0.0258015285802723
1.99977452274523	0.0882565614113161
1.99860606263000	0.0486702562377412
1.99494747408547	0.0567647288415154
1.94154702342798	0.0552663163078567
1.64839222782841	0.0135018811815468
1.96963677254490	0.0258015285802723

三、完整MATLAB代码

这篇关于基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645191

相关文章

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、