【动态规划】【map】【C++算法】1289. 下降路径最小和 II

2024-01-26 01:04

本文主要是介绍【动态规划】【map】【C++算法】1289. 下降路径最小和 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总
map

LeetCode1289. 下降路径最小和 II

给你一个 n x n 整数矩阵 grid ,请你返回 非零偏移下降路径 数字和的最小值。
非零偏移下降路径 定义为:从 grid 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。
示例 1:
输入:grid = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。
示例 2:
输入:grid = [[7]]
输出:7
提示:
n == grid.length == grid[i].length
1 <= n <= 200
-99 <= grid[i][j] <= 99

动态规划

动态规划的状态表示

multimap<int,int> mSumToIndex 的key,各行的最小和,value 列下标。 mSumToIndex不包括当前行,mDp包括当前行。
只需要比较mSumToIndex 最小元素和次小元素。

动态规划的转移方程

各列和mSumToIndex的最小、次小元素结合,最小值为iMin。将iMin和列号放到mDp中。

动态规划的初始值

{0,1} {0,1}

动态规划的填表顺序

依次处理各行。

动态规划的返回值

mSumToIndex.begin().first

map

map可以分成有序(单调)map和无序(哈希)map。还可分成单键map和多键map(允许重复的键)。本文用的是有序、多键。

代码

核心代码

class Solution {
public:int minFallingPathSum(vector<vector<int>>& grid) {const int n = grid.size();if (1 == n){return grid[0][0];}multimap<int, int> mSumToIndex;mSumToIndex.emplace(0, 0);mSumToIndex.emplace(0, 1);for (const auto& v : grid){const auto it = mSumToIndex.begin();const auto it1 = next(it);multimap<int, int> mDp;for (int i = 0; i < n; i++){int iMax = INT_MAX;if (it->second != i){iMax = min(iMax, it->first + v[i]);}if (it1->second != i){iMax = min(iMax, it1->first + v[i]);}mDp.emplace(iMax, i);}mSumToIndex.swap(mDp);}return mSumToIndex.begin()->first;}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<vector<int>> grid;{Solution sln;grid = { {1,2,3},{4,5,6},{7,8,9} };auto res = sln.minFallingPathSum(grid);Assert(13, res);}{Solution sln;grid = { {7} };auto res = sln.minFallingPathSum(grid);Assert(7, res);}
}

2023年一月版

class Solution {
public:
int minFallingPathSum(vector<vector>& grid) {
if (1 == grid.size())
{
return grid[0][0];
}
vector pre = grid[0];
for (int i = 1; i < grid.size(); i++)
{
vector dp(grid.size(), 1000 * 1000 * 1000);
for (int j = 0; j < dp.size(); j++)
{
for (int k = 0; k < pre.size(); k++)
{
if (j == k)
{
continue;
}
dp[j] = min(dp[j], pre[k] + grid[i][j]);
}
}
pre.swap(dp);
}
return *std::min_element(pre.begin(),pre.end());
}
void GetTop2(vector<std::pair<int, int>>& pre, const vector& v)
{
for (int i = 0; i < v.size(); i++)
{
const int& iValue = v[i];
if (pre.size() < 2)
{
pre.emplace_back(i, iValue);
}
else
{
if (iValue < pre[1].second)
{
pre.erase(pre.begin());
pre.emplace_back(i, iValue);
}
else if (iValue < pre[0].second)
{
pre[0].first = i;
pre[0].second = iValue;
}
}
}
}
};

2023年2月

class Solution {
public:
int minFallingPathSum(vector<vector>& grid) {
if (1 == grid.size())
{
return grid[0][0];
}
vector<std::pair<int, int>> pre;
GetTopN(pre, grid[0],2);
for (int i = 1; i < grid.size(); i++)
{
vector<std::pair<int, int>> cur;
GetTopN(cur, grid[i],3);
vector<std::pair<int, int>> dp;
for (auto& it : cur)
{
if (it.first == pre[1].first)
{
dp.emplace_back(it.first, it.second + pre[0].second);
}
else
{
dp.emplace_back(it.first, it.second + pre[1].second);
}
}
if (dp.size() > 2)
{
int iMaxIndex = 0;
for (int j = 1; j < dp.size(); j++)
{
if (dp[j].second > dp[iMaxIndex].second)
{
iMaxIndex = j;
}
}
dp.erase(dp.begin() + iMaxIndex);
}
//确保dp[0].second大于dp[1].second
if (dp[0].second < dp[1].second)
{
auto tmp = dp[0];
dp.erase(dp.begin());
dp.push_back(tmp);
}
pre.swap(dp);
}
return min(pre[0].second, pre[1].second);
}
void GetTopN(vector<std::pair<int, int>>& pre, const vector& v, int n)
{
for (int i = 0; i < v.size(); i++)
{
const int& iValue = v[i];
bool bInsert = false;
for (int j = 0; j < pre.size(); j++)
{
if (iValue > pre[j].second)
{
pre.emplace(pre.begin() + j, i, iValue);
bInsert = true;
break;
}
}
if (!bInsert)
{
pre.emplace_back(i, iValue);
}
if (pre.size() > n)
{
pre.erase(pre.begin());
}
}
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【map】【C++算法】1289. 下降路径最小和 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645188

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co