Spring SpEL在Flink中的应用-与Filter结合实现数据动态分流

2024-01-25 21:28

本文主要是介绍Spring SpEL在Flink中的应用-与Filter结合实现数据动态分流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、POM依赖
  • 二、主函数代码示例
  • 三、FilterFunction实现
  • 总结


前言

SpEL表达式与Flink fiter结合可以实现基于表达式的灵活动态过滤。有关SpEL表达式的使用请参考Spring SpEL在Flink中的应用-SpEL详解
可以将过滤规则放入数据库,根据不同的数据设置不同的过滤表达式,从而实现只需修改过滤表达式不用修改Flink代码的效果。


一、POM依赖

首先在 pom.xml 中加入依赖:

<dependency><groupId>org.springframework</groupId><artifactId>spring-expression</artifactId><version>5.2.0.RELEASE</version>
</dependency>

二、主函数代码示例


import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.types.Row;import java.text.SimpleDateFormat;public class FlinkSpelFilterDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();Row row=Row.of("张三","001",getTimestamp("2016-10-24 21:59:06"),23);Row row2=Row.of("张三","002",getTimestamp("2016-10-24 21:50:06"),33);Row row3=Row.of("张三","003",getTimestamp("2016-10-24 21:51:06"),43);Row row4=Row.of("李四","004",getTimestamp("2016-10-24 21:50:56"),13);Row row5=Row.of("李四","005",getTimestamp("2016-10-24 00:48:36"),53);Row row6=Row.of("李四","006",getTimestamp("2016-10-24 00:48:36"),34);Row row7=Row.of("李四","007",getTimestamp("2016-10-24 00:48:36"),23);Row row8=Row.of("李四","008",getTimestamp("2016-10-24 00:48:36"),26);Row row9=Row.of("李四","009",getTimestamp("2016-10-24 00:48:36"),63);DataStreamSource<Row> source =env.fromElements(row,row2,row3,row4,row5,row6,row7,row8,row9);//spel表达式,实现日期的比较过滤String spel="compareDate(#row.getField(2), \"2016-10-24 00:48:36\")==0";//实现对数字的过滤
//        spel="#row.getField(3)>33";SingleOutputStreamOperator<Row> filterStream = source.filter(new FilterSpelFunction(spel));filterStream.print();env.execute();}private static java.sql.Timestamp getTimestamp(String str) throws Exception {
//		String string = "2016-10-24 21:59:06";SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");java.util.Date date=sdf.parse(str);java.sql.Timestamp s = new java.sql.Timestamp(date.getTime());return s;}

三、FilterFunction实现


import org.apache.flink.api.common.functions.RichFilterFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.types.Row;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.expression.Expression;
import org.springframework.expression.spel.standard.SpelExpressionParser;
import org.springframework.expression.spel.support.StandardEvaluationContext;
import spel.demo.util.SpelMethodUtil;/*** 基于spel 表达式的过滤*/
public class FilterSpelFunction extends RichFilterFunction<Row> {private static final Logger logger = LoggerFactory.getLogger(FilterSpelFunction.class);private transient Expression exp;private String filterExpr;public FilterSpelFunction(String filterSpel) {filterExpr=filterSpel;logger.info("filterExpr:{}",filterExpr);}@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);SpelExpressionParser parser = new SpelExpressionParser();exp = parser.parseExpression(filterExpr);}@Overridepublic boolean filter(Row row) throws Exception {try {//注册自定义函数类StandardEvaluationContext conetxt = new StandardEvaluationContext(new SpelMethodUtil());//设置变量conetxt.setVariable("row",row);Boolean value = exp.getValue(conetxt, Boolean.class);if (value == null) {logger.error("表达式结果为null");throw new Exception("表达式结果为null");}return value;}catch (Exception e){logger.error("filter 异常", e);throw e;}}
}

自定义函数类


import org.apache.commons.lang3.StringUtils;import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;public class SpelMethodUtil {public static final String TIMESTAMP_FORMAT = "yyyy-MM-dd HH:mm:ss";public static final String DATE_FORMAT = "yyyy-MM-dd";public static final String TIME_FORMAT = "HH:mm:ss";public static Integer compareDate(Date date, String strDate){Integer result;if(date==null&& StringUtils.isBlank(strDate)){return 0;}else{if(date==null || StringUtils.isBlank(strDate)){return -2;}}String trimDate=strDate.trim();String format = findFormat(trimDate);Date date2 = stringToDate(trimDate, format);result=date.compareTo(date2);return result;}public static Integer compareDate(Date first, Date second){if(first==null&& second==null){return 0;}else{if(first==null || second==null){return -2;}}return first.compareTo(second);}public static Date stringToDate(String dateStr,String format){SimpleDateFormat sdf = new SimpleDateFormat(format);Date date=null;try {date= sdf.parse(dateStr);} catch (ParseException e) {e.printStackTrace();}return date;}/*** 查找与输入的字符型日期相匹配的format* @param strDate* @return*/public static String findFormat(String strDate){String result=null;String trimDate=strDate.trim();int len=trimDate.length();String dateRegex = "";if(len==TIMESTAMP_FORMAT.length()){dateRegex = "^\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}$";if(trimDate.matches(dateRegex)){result=TIMESTAMP_FORMAT;}}else if(len==DATE_FORMAT.length()){dateRegex = "^\\d{4}-\\d{2}-\\d{2}$";if(trimDate.matches(dateRegex)){result=DATE_FORMAT;}}else if(len==TIME_FORMAT.length()){dateRegex = "^\\d{2}:\\d{2}:\\d{2}$";if(trimDate.matches(dateRegex)){result=TIME_FORMAT;}}else{throw  new RuntimeException("不可识别的日期格式!"+strDate);}return result;}public static Integer addAge(Integer age){return age+4;}
}

总结

以上只是简单的示例,在实际应用中可以将过滤表达式放到数据库,将过滤规则放入缓存定时刷新。大家可以根据实际需求进行扩展。

这篇关于Spring SpEL在Flink中的应用-与Filter结合实现数据动态分流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644672

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三