先验概率 后验概率 似然 极大似然估计 极大后验估计 共轭 概念

2024-01-25 19:18

本文主要是介绍先验概率 后验概率 似然 极大似然估计 极大后验估计 共轭 概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/hxxiaopei/article/details/8034184

 

最近在看LDA,里面涉及到 狄利克雷的概念,为了把这个事情搞明白,查了一些相关概率知识,

 

举个例子,掷硬币,伯努利实验 中随机变量x={正面,背面},正面的概率μ为模型参数,假定做了N次试验,Data 中观察序列为X={正面,正面。。。。反面},正面的次数为k,服从二项分布:p(X|μ)pk(1P)(Nk)
P(X|μ) 则成为似然函数
针对观察到的随机变量(也就是Data)X,以及模型参数μ:
P(X|μ)为μ的似然函数,描述的是该观察集合以多大的概率由μ产生
P(μ)为μ的先验概率,这个概率是经验的总结,和实验无关
P(μ|α)为μ的先验概率,依赖于模型参数α,刻画了在α的情况下,参数(概率)μ出现的概率
P(μ|X)为μ的后验概率,描述给定数据X的情况下,模型参数=μ的概率,μ可以有很多取值。
我们现在的问题是,根据实验Data X,估计模型参数μ,很显然,我们想到极大似然估计:
P(X|μ),求解参数μ,使得观察data的概率最大,也就是说找到最有可能产生Data的模型参数。

p(X|μ)xip(xi|μ)=pk(1p)Nk

求其一阶导数,采用梯度下降法,令其导数为0,可以求出p= k/n,符合我们的期望。这就是似然函数以及极大似然估计的概念。

'现在有一个问题: 如果N的次数不够大,比如我就做了1次试验,碰巧是正面,结果就是p=1,得出正面概率为1的谬论。很显然,对抛硬币,我们有一定的先验,比如抛10次,应该有5次,或者4-6次是正面,也就是有先验概率p=0.4~0.6.

所以我们在似然函数的基础上加上先验概率,估计的会更准确,P(μ|α)表示μ的先验概率,也可以理解为抛硬币时,正面概率为μ的概率是多少,具体概率大小依赖于参数。
在PRML中提到后验概率 ~ 似然函数*先验概率,也就是
p(μ|X)p(μ|α)p(X|μ)=xip(μ|α)μk(1μ)Nk
参数估计变为MAP极大后验估计.对于二项分布,它的概率分布为 p(X|μ)pk(1p)Nk

我们不禁想,如果先验概率p(μ|α)和似然函数的形式一样,也是 p(μ|α)=μa(1μ)b,那么后验概率的形式也是是这个形式:p(μ|X)μa+k(1μ)b+Nk,看起来非常简洁,简洁就是美:)。
这就是共轭先验,不对其概念做很准确的描述,直白一点,就是先验和似然有相同的分布,从而后验也有相同的分布。

补充一句,prml所言,共轭先验,是分布的分布,概率的概率,如下:
假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}。现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,0.1,0.1}。现在,我们还不满足,我们想要做10000次试验,每次试验中我们都投掷骰子10000次。我们想知道,出现这样的情况使得我们认为,骰子六面出现概率为{0.2,0.2,0.2,0.2,0.1,0.1}的概率是多少(说不定下次试验统计得到的概率为{0.1, 0.1, 0.2, 0.2, 0.2, 0.2}这样了)。这样我们就在思考骰子六面出现概率分布这样的分布之上的分布。而这样一个分布就是Dirichlet分布 From : http://www.xperseverance.net/blogs/2012/03/510/

二项分布的共轭先验就是beta 分布。形式是Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa1(1μ)b1
采用MAP极大后验计算后μ=(k+a )/(N + a + b),加上了平滑因子 a b,如果 a=5, b=5,k=1, N=1,对应的μ=0.45,更接近我们理解上的u=0.5
所以beta分布式二项分布的共轭先验分布

LDA中提到的 狄利克雷分布,其实就是就是 多项分布的共轭先验分布。
多项分布和二项分布类似,只是参数有多个, P(X|μ)=μn11μn22μn33....μnkk其共轭先验分布狄利克雷分布 P(μ|α)μα111μα212μα311....μαk1

这篇关于先验概率 后验概率 似然 极大似然估计 极大后验估计 共轭 概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644338

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java Instrumentation从概念到基本用法详解

《JavaInstrumentation从概念到基本用法详解》JavaInstrumentation是java.lang.instrument包提供的API,允许开发者在类被JVM加载时对其进行修改... 目录一、什么是 Java Instrumentation主要用途二、核心概念1. Java Agent

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)