【MRI基础】TR 和 TE 时间概念

2024-09-09 04:28
文章标签 基础 概念 时间 mri tr te

本文主要是介绍【MRI基础】TR 和 TE 时间概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重复时间 (TR)

磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。

回声时间 (TE)

MRI 中的回波时间 (TE,echo time) 是 RF 脉冲的传送和接收到的信号 (回波) 峰值之间的时间。TE 也以毫秒 (ms) 为单位进行测量。它主要影响测量回波时发生的横向松弛量 (T2 松弛)。TE 在根据松弛特性区分各种组织类型方面发挥着重要作用。这里以gradient echo sequence (GRE) 为例。

 

TR 和 TE 的物理机制

MRI 中 TR 和 TE 背后的物理原理涉及磁场、RF 脉冲和体内氢原子核(质子)之间的相互作用。以下是详细分析:

磁场和质子的排列

  • 主磁场 (B0):当患者被置于 MRI 扫描仪中时,他们会暴露在强大的静磁场 (B0) 中。该磁场导致体内氢核(质子)的磁矩与磁场平行或反向平行。这些质子中的大多数平行排列,从而导致磁场方向的净磁化矢量 (M0)。

射频脉冲和激励

  • RF 脉冲:拉莫尔频率(特定于磁场强度和原子核类型)的射频脉冲垂直于主磁场施加。该 RF 脉冲使净磁化矢量从纵向(沿 B0)倾斜到横向平面。
  • 翻转角:磁化矢量倾斜的角度称为翻转角(例如,完全翻转到横向平面为 90 度)。

松弛过程

  • T1 弛豫(纵向弛豫):关闭 RF 脉冲后,磁化矢量开始沿 B0 场弛豫回到其平衡位置。这种恢复以 T1 弛豫时间为特征,即纵向磁化恢复 63% 的时间常数。
  • T2 弛豫(横向弛豫):同时,由于邻近自旋之间的相互作用,磁化矢量的横向分量发生失相,其特征是 T2 弛豫时间,即横向磁化衰减 63% 的时间常数。

重复时间(TR)

  • TR 的定义: TR 是施加一个 RF 脉冲与施加下一个 RF 脉冲之间的时间。它会影响在施加下一个 RF 脉冲之前纵向磁化恢复的程度。
  • 短 TR: TR 较短时,纵向磁化恢复不完全,导致饱和并影响图像对比度,尤其是增强 T1 对比度。
  • 长 TR:通过长 TR,纵向磁化几乎可以完全恢复,从而最大限度地减少饱和效应并增强 T2 对比度。

回波时间(TE)

  • TE 的定义: TE 是施加 RF 脉冲和接收线圈检测到信号(回波)峰值之间的时间。它决定了在松弛过程中测量信号的时间。
  • 短 TE:短 TE 在相位失调最小时尽早捕获信号,这对于 T1 加权成像非常重要。
  • 长 TE:长 TE 在发生更多失相时稍后捕获信号,这对于 T2 加权成像非常重要。

TR 和 TE 对图像对比度的影响

T1加权成像 

短 TR 和短 TE 值增强了 T1 加权对比度,使得具有短 T1 弛豫时间的组织(例如脂肪)显得明亮,而具有较长 T1 时间的组织(例如液体)显得暗淡。

T2加权成像

较长的 TR 和 TE 值可产生 T2 加权图像,其中具有较长 T2 弛豫时间的组织(例如液体)显得明亮。较长的 TR 可确保完全纵向弛豫,而较长的 TE 可使 T2 对比度有足够的横向失相。

质子密度加权成像

中等 TR 和短 TE 值用于产生质子密度加权图像,强调质子密度的差异,同时最小化 T1 和 T2 对比效应。

 

 

T2 加权 MRI 图像中重复时间 (TR) 的影响

低 TR(1000 毫秒)

  • 导致信噪比相对较低,从而产生较多噪声的图像。
  • T2 对比度并不理想,因为组织信号没有足够的时间在连续的激发之间恢复,从而降低了不同组织类型之间的区别。组织之间的CNR不好。

中等 TR (2000 毫秒)

  • 提供中等 SNR,与较低的 TR 设置相比可提高图像质量。
  • 提供比低 TR 更好的 T2 对比度,但可能仍然不是清晰区分所有组织类型的最佳选择。

最佳 TR (3000-4000 毫秒)

  • 最适合最大化 T2 对比度,可以更清晰地区分不同的组织。
  • 由于组织在激发之间有充足的时间放松和恢复信号,因此更高的 SNR 可以产生更清晰、更详细的图像。

高 TR(10000 毫秒)

  • 可产生非常高的信噪比,以最小的噪声产生最清晰的图像。组织之间的CNR最好。
  • 虽然对于 SNR 来说非常好,但是极长的 TR 会导致扫描时间延长,使患者不舒服,还会在成像中引入运动伪影。

回波时间 (TE) 对 T2 加权 MRI 图像的影响

低 TE(15-25 毫秒):

  • 产生质子密度 (PD) 对比度:在这个短 TE 中,图像具有最小的 T2 加权,强调质子密度对比度,其中信号强度与组织中的氢质子数量更相关。
  • 信噪比 (SNR):由于信号衰减最小,因此 SNR 较高,可以从组织中捕获强信号。

中等 TE (50-60 毫秒):

  • 图像对比度:开始显示增加的 T2 加权,其中具有较长 T2 弛豫时间的组织(如充满液体的结构)显得更亮。
  • SNR 影响:中等 SNR;由于 T2 衰减会导致一些信号损失,与低 TE 相比,这会降低图像清晰度。

最佳 TE(100-110 毫秒):

  • 图像对比度:最佳地增强 T2 对比度,使其非常适合检测水肿和神经胶质增生等具有延长 T2 弛豫时间的病理。
  • SNR 影响:足够的 T2 对比度和可接受的 SNR 之间取得良好的平衡,尽管一些信号衰减是不可避免的。

高 TE(200-400 毫秒):

  • 增加 T2 加权:进一步强调 T2 对比度,但代价是组织放松速度加快导致信号衰减增加。
  • SNR:由于信号衰减明显导致 SNR 降低,从而降低了整体图像的清晰度和细节。
  • 降低组织对比度:高 TE 会降低 T2 弛豫时间略有不同的组织之间的区分,从而可能掩盖精细细节。

 

T1 加权 MRI 图像中重复时间 (TR) 的影响

低 TR (150 毫秒):

  • 在 T1 加权成像中使用低 TR 会导致 SNR 降低,因为组织没有足够的时间完全恢复其纵向磁化。这会导致整体信号强度较弱,并且不同组织之间的 T1 对比度区分效果较差。

中等 TR (250 毫秒):

  • 在中等 TR 设置下,与极低 TR 相比,SNR 略有改善。组织有更多时间进行磁化恢复,这可以增强信号强度,但仍然无法为 T1 加权图像提供最佳对比度。

最佳 TR (300-500 毫秒):

  • 此 TR 范围被认为是 T1 加权成像的理想范围。它能够在 SNR 和组织对比度之间实现良好的平衡。组织恢复足够的纵向磁化以产生强信号,从而有助于更好地区分不同组织类型的 T1 特性。

高 TR(2000 毫秒):

  • 高 TR 会大幅提高 SNR,因为组织几乎完全恢复了其纵向磁化,从而使信号强度最大化。然而,在如此高的 TR 值下,图像不仅会增强 T1,还会增强质子密度 (PD) 对比度。这种混合对比度可能很有用,但可能会掩盖纯 T1 对比度效果。

参考文献 

  • Pai, A., Shetty, R., Hodis, B. and Chowdhury, Y.S. (2023) ‘Magnetic Resonance Imaging Physics’, StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK572133/
  • Alzola-Aldamizetxebarria, S., Fernández-Méndez, L., Padro, D., Ruíz-Cabello, J. and Ramos-Cabrer, P., 2022. A Comprehensive Introduction to Magnetic Resonance Imaging Relaxometry and Contrast Agents. ACS Omega, [online] 7(42), pp.36905-36917. Available at: A ComprehensiveIntroduction to Magnetic Resonance Imaging Relaxometryand Contrast Agents - PMC

这篇关于【MRI基础】TR 和 TE 时间概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150153

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增