UCAS-AOD遥感旋转目标检测数据集——基于YOLOv8obb,map50已达96.7%

2024-01-25 15:36

本文主要是介绍UCAS-AOD遥感旋转目标检测数据集——基于YOLOv8obb,map50已达96.7%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.UCAS-AOD简介

1.1数据说明

遥感图像,又名高分辨率遥感图像。遥感图像的分类依据是根据成像的介质不同来进行分类的。UCAS-AOD (Zhu et al.,2015)用于飞机和汽车的检测,包含飞机与汽车2类样本以及一定数量的反例样本(背景),总共包含2420幅图像和14596个实例。论文中特别提到了目标检测的方向健壮性,所以在数据集标注过程中作者对数据进行了一定程度的筛选,使得图像中的物体方向分布均匀,数据集具体内容如下:

内容飞机图像飞机实例汽车图像汽车实例反例图像
数量100074825107114910

数据集中目标为航拍图像下的飞机和车辆,使用Google Earth软件在全球部分区域中截取的图像。

1.2数据格式

数据集分为CAR、PLANE、NEG三个文件,CAR、PLANE为正例图像,NEG为反例图像。正例图像以P+数字序号命名,反例图像以N+数字序号命名,所有图像为PNG格式,尺寸为1280x659和1372x941。UCAS-AOD采用HBB(horizontal bounding box)的标注方法,图像的groundtruth采用txt格式保存,以图像的同名文档方式存储。对于整理好的txt文档数据,每列的属性如下:

x1,y1,x2,y2,x3,y3,x4,y4,theta,x,y, width,height

其中,x1,y1,x2,y2,x3,y3,x4,y4为旋转矩形框四个顶点,theta为倾斜角。

2.UCAS-AOD数据处理

2.1处理成如下格式

x1 y1 x2 y2 x3 y3 x4 y4 class class_index

​处理代码如下:

import os# 输入和输出文件夹路径
input_folder_path = 'label'
output_folder_path = 'txt'# 遍历labels文件夹下所有txt文件
for filename in os.listdir(input_folder_path):if filename.endswith('.txt'):input_file_path = os.path.join(input_folder_path, filename)output_file_path = os.path.join(output_folder_path, filename)# 打开原始文件并创建一个新文件用于写入修改后的数据with open(input_file_path, 'r') as input_file, open(output_file_path, 'w') as output_file:for line in input_file:# 在这里你可以对每一行的内容进行处理# 例如,将每一行的数据以制表符分割并转换为浮点数列表data = [float(value) for value in line.strip().split('\t')]# 仅保留每行数据的前8个数data = data[:8]# 将处理后的数据写入新文件output_line = '\t'.join(map(str, data)) + '\tPLANE' + '\t1\n'output_file.write(output_line)print(f"数据已保存到 {output_file_path}")

分别以CAR和PLANE为例,得到:

276.3971  91.25021  291.1375  38.23406  330.8891  49.28647  316.1486  102.3026  CAR  0
254.0147  168.3054  253.027  124.0611  314.917  122.6796  315.9046  166.9239  PLANE  1

2.2进行obb格式的转换

from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('C:\myyolo\ultralytics-main\dataobb')
#关于dataobb文件下的目录可参考https://blog.csdn.net/qq_41301570/article/details/135540398

以上面CAR和PLANE为例,转换后的结果如下:

0 0.215935 0.138468 0.227451 0.0580183 0.258507 0.0747898 0.246991 0.155239
1 0.198449 0.255395 0.197677 0.188257 0.246029 0.18616 0.2468 0.253299

2.3进行训练

如果你不想浪费时间进行数据的处理,可私戳获取数据集​!!!

2.4进行验证

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

这篇关于UCAS-AOD遥感旋转目标检测数据集——基于YOLOv8obb,map50已达96.7%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643717

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock