【数据存储】数据压缩算法DEFLATE

2024-01-25 15:20

本文主要是介绍【数据存储】数据压缩算法DEFLATE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.数据压缩算法DEFLATE

当前数据压缩领域流行的无损压缩算法有很多,如DEFLATE、BZIP2、LZMA、LZMA2等等,其中压缩速度最快的是DEFLATE压缩算法。根据对DEFLATE算法性能的实际测试,发现DEFLATE算法在大数据文件压缩方面的性能表现,并不如预期那样令人满意。

Deflate是同时使用了LZ77算法与哈夫曼编码(Huffman Coding)的一个无损数据压缩算法1。

Deflate压缩与解压代码可以在自由、通用的压缩库zlib上找到。常见的压缩算法如下:

  • zlib(RFC1950):一种格式,是对deflate进行了简单的封装,zlib=zlib头+deflate编码的实际内容+zlib尾。
  • gzip(RFC1952):一种格式,也是对deflate进行的封装,gzip=gzip头+deflate编码的实际内容+gzip尾。

LZ77算法是采用字典做数据压缩的算法,由以色列的两位大神Jacob Ziv与Abraham Lempel在1977年发表的论文《A Universal Algorithm for Sequential Data Compression》中提出。基于统计的数据压缩编码,比如Huffman编码,需要得到先验知识,即信源的字符频率,然后进行压缩。但是在大多数情况下,这种先验知识是很难预先获得。因此,设计一种更为通用的数据压缩编码显得尤为重要。LZ77数据压缩算法应运而生,其核心思想是利用数据的重复结构信息来进行数据压缩。

two types of compression methodologies:

  • Stateless - data associated with a compression operation is compressed without any reference to another compression operation.
  • Stateful - data in each compression operation is compressed with reference to previous compression operations in the same data stream i.e. history of data is maintained between the operations.

stateful inflate

  • Inflate: 这是一个算法,通常用于数据压缩和解压缩。它是DEFLATE算法的一部分,DEFLATE是一个广泛使用的无损数据压缩算法。
  • Stateful (有状态的): 在计算中,一个算法或过程如果依赖于其之前的状态或历史,我们说它是“有状态的”。与“无状态的”算法或过程相反,后者不依赖于任何之前的状态。

在解压缩过程中使用某种状态的系统或算法。这通常涉及到以下内容:

上下文敏感: 有状态的解压缩算法可能需要对之前的上下文进行敏感分析,以便更好地理解并解压缩数据。

历史记录: 这些算法可能会跟踪之前处理过的数据或模式,以优化解压缩过程。

动态调整: 算法可能会根据它之前遇到的数据动态地改变其行为或参数。

stateless inflate

Here is a simplified explanation of how stateless inflate works:

  1. Block Independence: In a stateless inflate process, compressed data is divided into blocks, and each block is compressed independently. This means that the decompression of one block doesn’t rely on the decompression state of previous blocks.
  2. Decompression Algorithm: The stateless inflate algorithm reads a compressed block of data and uses the information within that block to decompress it. This typically involves reconstructing the original data from the compressed form using the Huffman codes and LZ77 compression techniques.
  3. No Persistent State: After decompressing a block, there is no need to maintain persistent state information for the next block. Each block is treated as an independent unit, making it easier to parallelize or distribute the decompression process.
  4. Efficiency: Stateless inflate can be more efficient in certain scenarios, especially when dealing with streaming data or in parallel processing environments. It allows for a simpler and faster implementation because there is no need to manage state information across blocks.

Stateless inflate is commonly used in scenarios where data can be processed in a streaming fashion, and each compressed block is relatively small and independent. This approach is well-suited for certain applications, such as network protocols, file compression formats, and other situations where data arrives in chunks that can be processed independently.

这篇关于【数据存储】数据压缩算法DEFLATE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643684

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock