如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决)

本文主要是介绍如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark datafrme提供了强大的JOIN操作。


但是在操作的时候,经常发现会碰到重复列的问题。如下:


如分别创建两个DF,其结果如下:


val df = sc.parallelize(Array(
    ("one", "A", 1), ("one", "B", 2), ("two", "A", 3), ("two", "B", 4)
)).toDF("key1", "key2", "value")
df.show()


+----+----+-----+
|key1|key2|value|
+----+----+-----+
| one|   A|    1|
| one|   B|    2|
| two|   A|    3|
| two|   B|    4|
+----+----+-----+


val df2 = sc.parallelize(Array(
    ("one", "A", 5), ("two", "A", 6)
)).toDF("key1", "key2", "value2")
df2.show()


+----+----+------+
|key1|key2|value2|
+----+----+------+
| one|   A|     5|
| two|   A|     6|
+----+----+------+


对其进行JOIN操作之后,发现多产生了KEY1和KEY2这样的两个字段。

val joined = df.join(df2, df("key1") === df2("key1") && df("key2") === df2("key2"), "left_outer")
joined.show()


+----+----+-----+----+----+------+
|key1|key2|value|key1|key2|value2|
+----+----+-----+----+----+------+
| two|   A|    3| two|   A|     6|
| two|   B|    4|null|null|  null|
| one|   A|    1| one|   A|     5|
| one|   B|    2|null|null|  null|
+----+----+-----+----+----+------+


假如这两个字段同时存在,那么就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'key2' is ambiguous


因此,网上有很多关于如何在JOIN之后删除列的,后来经过仔细查找,才发现通过修改JOIN的表达式,完全可以避免这个问题。而且非常简单。主要是通过Seq这个对象来实现。


df.join(df2, Seq("key1", "key2"), "left_outer").show()


+----+----+-----+------+
|key1|key2|value|value2|
+----+----+-----+------+
| two|   A|    3|     6|
| two|   B|    4|  null|
| one|   A|    1|     5|
| one|   B|    2|  null|
+----+----+-----+------+

通过实践,完全成功!

这篇关于如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642532

相关文章

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据