最高年薪200W,大数据工程师为什么这么值钱?

2024-01-25 06:48

本文主要是介绍最高年薪200W,大数据工程师为什么这么值钱?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产

 

大数据、云计算已经成为当下最热的词,相关行业的职业薪资也是水涨船高。

 

北京大数据职位薪酬一览:

有相关资料显示:

 

在工龄3年以下的人群中,大数据工程师、AI 工程师、全部工程师的平均年薪分别为 29.22 万元、29.98 万元、23.73 万元;

 

在工龄8-10年的人群中,三者的平均年薪分别达到了 44.23 万元、45.71 万元、39.91 万元;

想成为云计算大数据Spark高手,看这里!戳我阅读

年薪50W的Java程序员转大数据学习路线戳我阅读

大数据人工智能发展趋势与前景  戳我阅读

最全最新的大数据系统交流路径!!戳我阅读

2019最新!大数据工程师就业薪资,让人惊艳!戳我阅读

更有甚者,年薪达到200W+之巨。

 

 

可见,在大数据领域,随着工作年限的增长,薪资增幅较大。并且,无论在哪个工龄段,他们的平均年薪都高于全体工程师的平均水平。

 

大数据之所以被寄予厚望,是因为数据已经逐渐成为企业的核心竞争力,通过分析、挖掘数据的价值,企业可提前获知客户需求,预测其消费习惯和趋势。让管理者的一切决断都有据可依,不再盲目,降低企业风险。

 

近两年,数字化转型浪潮席卷各行各业,越来越多的传统行业开始认识到数据的价值。

 

Informatica 前主席兼首席执行官苏哈比 · 阿巴斯曾坦言,信息时代唯一最有价值的资产就是数据

 

未来数据规模将达到前所未有的数量级,企业对数据管理需求大幅提升,带来的结果是:大数据人才供不应求,其从业者价值被放大,薪酬也相应提升。

 

大数据的核心是大计算

 

究竟什么数据才算是大呢?大型制造企业和仓库多年积累下来的存货海量数据,高达几兆兆字节,算不算大数据?3000个PoS机的现金数据与几千份工作表中的数据算不算大数据?每天发生在盈利组织、社会管理机构的图像、视频、文本文件、电子邮件交流、社交媒体,音频文件以及其他算不算是大数据?

 

看是否经过有目的的大计算,而大计算所使用的标准就三样:

 

 1、多样性

 

以上述的PoS数据为例,尽管数量庞大但它依然不是大数据,但是如果把从供应商处取得的数据与其整合后所构成的带规律性的供应链,则它们就成了大数据。

 

 2、关联性

 

以天气预报为例,气象数据虽然仅仅是从一些基础的系统取得(气温、气压、风速等),但数据关系却极为复杂,即使是最顶尖的气象学家也不一定总能做出准确的气象预测。这个时候,他们就会使用高度专业化的数据分析方法以作出更准确的预测。当然,从这个意义上讲,地震的预报显然是超过目前人类的认知的,而随着未来智能社会生态与人工智能的进步,这个问题估计会得到不断改善。

 

 3、因果性

 

很多人把因果性习惯地理解成经验论,其实是失之偏颇的,因为经验论只是一种很狭隘的认知论。换句话说,经验论多数是线性思维,但是因果论却包含了线性与发散两种思维。

 

比方说,当你想知道口红十月份的市场情况的时候,你所要的数据就不仅仅是你自己的采购记录了,你还需要整合社交媒体和其他外部市场数据,才能得到最佳答案。

 

入门学习大数据,一方面可以通过自学,另一方面可以通过参加培训机构。

 

这里有几点建议,供大家参考:

 

第一点:自己开始学习大数据但是真的找不到门路,不知道从何下手,不知道安装哪些大数据软件工具、怎样配置一套学习环境的时候。你可以先去咨询一些专业机构,或者搜索一些专业问答或者视频。

 

第二点:自己有一定大数据基础,日常学习中,碰到各种问题,一个人摸索,效率较低,可以加入一些好的学习交流环境,结交更多的大数据好友,以便快速学习成长。

 

第三点:0基础转行大数据。没有基础当然也可以转,但是需要先打好编程基础,Java、Python等,可以参加培训加快自己的成长,这种途径也是最快最有效的。

 

总而言之,参加大数据培训就是以金钱换取时间(快速成长)和空间(创造更好的学习交流环境),能否发挥最大的价值,就要看个人的情况和选择怎样的培训机构了。一个好的培训机构不仅能够让你快速的学到大数据方面的知识,更是锻炼了你的项目实战能力,让你快速找到一份满意的大数据工作,让你顺利进入到大数据领域工作,开展你的大数据职业生涯。

 

 

这篇关于最高年薪200W,大数据工程师为什么这么值钱?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642422

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元