pytorch模型转换为rknn模型,使用npu推理

2024-01-25 04:50

本文主要是介绍pytorch模型转换为rknn模型,使用npu推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、转换为onnx模型

在yolov5代码中运行export.py,转换为onnx模型,参数根据自己需要修改。

二、创建转换目录

然后在rknn文件夹下,找到onnx2rknn.py、dataset.txt和coco2017数据集,将它们复制到新的文件夹中,作为rknn模型转换目录。将需要转换的onnx模型也放在该目录中。

在这里插入图片描述

我的目录结构如图所示,其中第一个文件夹是已经转换成功的生成目录。

在这里插入图片描述

三、转换为rknn模型

RKNN-Toolkit2 是为用户提供在 PC、 Rockchip NPU平台上进行模型转换、推理和性能评估的开发套件,用户通过该工具提供的 Python 接口可以便捷地完成以下功能:

  1. 🏆模型转换:支持Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型转为 RKNN模型,并支持 RKNN 模型导入导出,RKNN 模型能够在 Rockchip NPU 平台上加载使用。

  2. 🎽量 化 功 能 : 支 持将 浮 点 模 型 量 化 为 定 点 模 型 , 目 前 支 持 的 量 化 方 法 为 非 对 称 量 化 , 并 支 持 混 合 量化 功 能 。asymmetric_quantized-16 目前版本暂不支持。

  3. 🎯模型推理:能够在 PC 上模拟Rockchip NPU 运行 RKNN 模型并获取推理结果;或将 RKNN模型分发到指定的 NPU 设备上进行推理并获取推理结果。

  4. 🏋性能和内存评估:将 RKNN 模型分发到指定 NPU 设备上运行,以评估模型在实际设备上运行时的性能和内存占用情况。

  5. 🎼量化精度分析:该功能将给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,以便于分析量化误差是如何出现的,为提高量化模型的精度提供思路。

进入我们之前配置安装有rknn-toolkit2的环境,输入命令进行转换。

python export.py

过程中的日志输出:

(py36) (base) dzh@dzh-Lenovo-Legion-Y7000:~/modelConvert/onnx2rknn$ python onnx2rknn.py 
W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
done
--> Building model
Analysing : 100%|███████████████████████████████████████████████| 168/168 [00:00<00:00, 3731.11it/s]
Quantizating : 100%|█████████████████████████████████████████████| 168/168 [00:00<00:00, 755.22it/s]
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '335' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '336' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
done
--> Export RKNN model: ./rknn_models/yolov5s-640-640_rm_transpose.rknn
done

然后在rknn_models下可以看到yolov5s-640-640_rm_transpose.rknn文件,重命名下,我们就可以拷贝到开发板上进行目标检测了。

在这里插入图片描述

四、问题记录

W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
E load_onnx: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
W load_onnx: ===================== WARN(3) =====================
E rknn-toolkit2 version: 1.3.0-11912b58
E load_onnx: Catch exception when loading onnx model: /home/dzh/modelConvert/onnx2rknn/yolov5s.onnx!
E load_onnx: Traceback (most recent call last):
E load_onnx:   File "rknn/api/rknn_base.py", line 1182, in rknn.api.rknn_base.RKNNBase.load_onnx
E load_onnx:   File "rknn/api/rknn_base.py", line 663, in rknn.api.rknn_base.RKNNBase._create_ir_and_inputs_meta
E load_onnx:   File "rknn/api/rknn_log.py", line 113, in rknn.api.rknn_log.RKNNLog.e
E load_onnx: ValueError: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
load model failed!

pt模型的输入图像的通道一定要和转换时的图像通道数相同,对于RGB图像肯定是3通道。

这篇关于pytorch模型转换为rknn模型,使用npu推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642134

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他