pytorch模型转换为rknn模型,使用npu推理

2024-01-25 04:50

本文主要是介绍pytorch模型转换为rknn模型,使用npu推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、转换为onnx模型

在yolov5代码中运行export.py,转换为onnx模型,参数根据自己需要修改。

二、创建转换目录

然后在rknn文件夹下,找到onnx2rknn.py、dataset.txt和coco2017数据集,将它们复制到新的文件夹中,作为rknn模型转换目录。将需要转换的onnx模型也放在该目录中。

在这里插入图片描述

我的目录结构如图所示,其中第一个文件夹是已经转换成功的生成目录。

在这里插入图片描述

三、转换为rknn模型

RKNN-Toolkit2 是为用户提供在 PC、 Rockchip NPU平台上进行模型转换、推理和性能评估的开发套件,用户通过该工具提供的 Python 接口可以便捷地完成以下功能:

  1. 🏆模型转换:支持Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型转为 RKNN模型,并支持 RKNN 模型导入导出,RKNN 模型能够在 Rockchip NPU 平台上加载使用。

  2. 🎽量 化 功 能 : 支 持将 浮 点 模 型 量 化 为 定 点 模 型 , 目 前 支 持 的 量 化 方 法 为 非 对 称 量 化 , 并 支 持 混 合 量化 功 能 。asymmetric_quantized-16 目前版本暂不支持。

  3. 🎯模型推理:能够在 PC 上模拟Rockchip NPU 运行 RKNN 模型并获取推理结果;或将 RKNN模型分发到指定的 NPU 设备上进行推理并获取推理结果。

  4. 🏋性能和内存评估:将 RKNN 模型分发到指定 NPU 设备上运行,以评估模型在实际设备上运行时的性能和内存占用情况。

  5. 🎼量化精度分析:该功能将给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,以便于分析量化误差是如何出现的,为提高量化模型的精度提供思路。

进入我们之前配置安装有rknn-toolkit2的环境,输入命令进行转换。

python export.py

过程中的日志输出:

(py36) (base) dzh@dzh-Lenovo-Legion-Y7000:~/modelConvert/onnx2rknn$ python onnx2rknn.py 
W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
done
--> Building model
Analysing : 100%|███████████████████████████████████████████████| 168/168 [00:00<00:00, 3731.11it/s]
Quantizating : 100%|█████████████████████████████████████████████| 168/168 [00:00<00:00, 755.22it/s]
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '335' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '336' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
done
--> Export RKNN model: ./rknn_models/yolov5s-640-640_rm_transpose.rknn
done

然后在rknn_models下可以看到yolov5s-640-640_rm_transpose.rknn文件,重命名下,我们就可以拷贝到开发板上进行目标检测了。

在这里插入图片描述

四、问题记录

W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
E load_onnx: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
W load_onnx: ===================== WARN(3) =====================
E rknn-toolkit2 version: 1.3.0-11912b58
E load_onnx: Catch exception when loading onnx model: /home/dzh/modelConvert/onnx2rknn/yolov5s.onnx!
E load_onnx: Traceback (most recent call last):
E load_onnx:   File "rknn/api/rknn_base.py", line 1182, in rknn.api.rknn_base.RKNNBase.load_onnx
E load_onnx:   File "rknn/api/rknn_base.py", line 663, in rknn.api.rknn_base.RKNNBase._create_ir_and_inputs_meta
E load_onnx:   File "rknn/api/rknn_log.py", line 113, in rknn.api.rknn_log.RKNNLog.e
E load_onnx: ValueError: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
load model failed!

pt模型的输入图像的通道一定要和转换时的图像通道数相同,对于RGB图像肯定是3通道。

这篇关于pytorch模型转换为rknn模型,使用npu推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642134

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2