pytorch模型转换为rknn模型,使用npu推理

2024-01-25 04:50

本文主要是介绍pytorch模型转换为rknn模型,使用npu推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、转换为onnx模型

在yolov5代码中运行export.py,转换为onnx模型,参数根据自己需要修改。

二、创建转换目录

然后在rknn文件夹下,找到onnx2rknn.py、dataset.txt和coco2017数据集,将它们复制到新的文件夹中,作为rknn模型转换目录。将需要转换的onnx模型也放在该目录中。

在这里插入图片描述

我的目录结构如图所示,其中第一个文件夹是已经转换成功的生成目录。

在这里插入图片描述

三、转换为rknn模型

RKNN-Toolkit2 是为用户提供在 PC、 Rockchip NPU平台上进行模型转换、推理和性能评估的开发套件,用户通过该工具提供的 Python 接口可以便捷地完成以下功能:

  1. 🏆模型转换:支持Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型转为 RKNN模型,并支持 RKNN 模型导入导出,RKNN 模型能够在 Rockchip NPU 平台上加载使用。

  2. 🎽量 化 功 能 : 支 持将 浮 点 模 型 量 化 为 定 点 模 型 , 目 前 支 持 的 量 化 方 法 为 非 对 称 量 化 , 并 支 持 混 合 量化 功 能 。asymmetric_quantized-16 目前版本暂不支持。

  3. 🎯模型推理:能够在 PC 上模拟Rockchip NPU 运行 RKNN 模型并获取推理结果;或将 RKNN模型分发到指定的 NPU 设备上进行推理并获取推理结果。

  4. 🏋性能和内存评估:将 RKNN 模型分发到指定 NPU 设备上运行,以评估模型在实际设备上运行时的性能和内存占用情况。

  5. 🎼量化精度分析:该功能将给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,以便于分析量化误差是如何出现的,为提高量化模型的精度提供思路。

进入我们之前配置安装有rknn-toolkit2的环境,输入命令进行转换。

python export.py

过程中的日志输出:

(py36) (base) dzh@dzh-Lenovo-Legion-Y7000:~/modelConvert/onnx2rknn$ python onnx2rknn.py 
W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
done
--> Building model
Analysing : 100%|███████████████████████████████████████████████| 168/168 [00:00<00:00, 3731.11it/s]
Quantizating : 100%|█████████████████████████████████████████████| 168/168 [00:00<00:00, 755.22it/s]
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '335' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '336' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
done
--> Export RKNN model: ./rknn_models/yolov5s-640-640_rm_transpose.rknn
done

然后在rknn_models下可以看到yolov5s-640-640_rm_transpose.rknn文件,重命名下,我们就可以拷贝到开发板上进行目标检测了。

在这里插入图片描述

四、问题记录

W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
E load_onnx: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
W load_onnx: ===================== WARN(3) =====================
E rknn-toolkit2 version: 1.3.0-11912b58
E load_onnx: Catch exception when loading onnx model: /home/dzh/modelConvert/onnx2rknn/yolov5s.onnx!
E load_onnx: Traceback (most recent call last):
E load_onnx:   File "rknn/api/rknn_base.py", line 1182, in rknn.api.rknn_base.RKNNBase.load_onnx
E load_onnx:   File "rknn/api/rknn_base.py", line 663, in rknn.api.rknn_base.RKNNBase._create_ir_and_inputs_meta
E load_onnx:   File "rknn/api/rknn_log.py", line 113, in rknn.api.rknn_log.RKNNLog.e
E load_onnx: ValueError: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
load model failed!

pt模型的输入图像的通道一定要和转换时的图像通道数相同,对于RGB图像肯定是3通道。

这篇关于pytorch模型转换为rknn模型,使用npu推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642134

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用