基于python豆瓣电影评论的情感分析和聚类分析,聚类分析有手肘法进行检验,情感分析用snownlp

本文主要是介绍基于python豆瓣电影评论的情感分析和聚类分析,聚类分析有手肘法进行检验,情感分析用snownlp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Python的豆瓣电影评论的情感分析和聚类分析是一种用于探索电影评论数据的方法。

情感分析
情感分析旨在从文本中提取情感信息,并对其进行分类,如正面、负面或中性。在这里,我们使用了一个名为snownlp的Python库来进行情感分析。Snownlp是一个基于概率算法和自然语言处理技术的情感分析工具。

首先,我们需要收集豆瓣电影的评论数据。可以使用豆瓣API或其他方式获取评论文本。接下来,我们将使用snownlp库对每条评论进行情感分析。该库会对文本进行处理并返回情感得分,该得分可以表示评论的情感极性。通过设定阈值,我们可以将评论划分为正面、负面或中性。

情感分析可以帮助我们了解用户对电影的情感倾向,并评估电影的受欢迎程度。例如,通过统计正面评论的比例,我们可以获知电影是否受到观众的喜爱。

聚类分析
聚类分析是一种将数据划分为相似组的方法,以便发现其中的模式和结构。在豆瓣电影评论中,我们可以使用聚类分析来将评论划分为不同的群组,每个群组具有相似的主题或情感。

一种常用的聚类算法是K-means算法。它通过计算数据点之间的距离,并将数据点分配到最近的簇中。在聚类分析中,我们通常会使用手肘法(Elbow Method)来确定最佳的簇数。

手肘法通过绘制簇数与聚类误差(即数据点与其所属簇中心的距离之和)之间的关系图。随着簇数的增加,聚类误差通常会逐渐减少。然而,当簇数增加到一定程度时,再增加簇数对聚类误差的减少作用较小。这时,图形呈现出一个明显的“弯曲”点,被称为“手肘点”。手肘点所对应的簇数被认为是最佳的簇数。

聚类分析可以帮助我们发现豆瓣电影评论中的不同主题、观点或情感集群。通过对不同群组进行进一步分析,我们可以了解电影受众的兴趣爱好、意见和评价。

主要代码:

import pandas as pd
df=pd.read_csv('豆瓣评论 坚如磐石.csv')
from snownlp import SnowNLP
#获取情感分数
line0=[]
list1=[]
for line in df.values.tolist():s = SnowNLP(str(line[1]))print(s.sentiments)list1.append(s.sentiments)if (s.sentiments>= 0.6):line0.append('积极')elif (0.6>s.sentiments>= 0.4):line0.append('中性')else:line0.append('消极')
print(line0)
df['情感分析']=line0
df['情感分数']=list1
import matplotlib.pyplot as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
data=df.groupby(by=['情感分析'])['评论'].count().reset_index()x=data['情感分析'].tolist()
y=data['评论'].tolist()
plt.figure(figsize=(20, 8), dpi=100)
# 绘制饼图
plt.pie(y, labels=x, autopct="%1.2f%%", colors=['b','r','g','y','c','m','y','k','c','g','y'])
# 显示图例
plt.legend()
# 添加标题
plt.title("情感分析饼图")
#为了让显示的饼图保持圆形,需要添加axis保证长宽一样
plt.axis('equal')
# 显示图像
plt.show()

运行效果

这篇关于基于python豆瓣电影评论的情感分析和聚类分析,聚类分析有手肘法进行检验,情感分析用snownlp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641153

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所