推荐系统算法 协同过滤算法详解(二)皮尔森相关系数

2024-01-24 18:44

本文主要是介绍推荐系统算法 协同过滤算法详解(二)皮尔森相关系数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

协同过滤算法(简称CF)

皮尔森(pearson)相关系数公式

算法介绍

 算法示例1:

算法示例2


前言

理解吧同胞们,实在是没办发把wps公式复制到文章上,只能截图了,我服了!!!

协同过滤算法(简称CF)

在早期,协同过滤几乎等同于推荐系统。主要的功能是预测和推荐。协同过滤推荐算法分为两类,分别是:

(英文userCF)

  1. 基于用户的协同过滤算法(相似的用户可能喜欢相同物品);这个一般适合推荐新闻和皮皮虾之类的,数据跟人有很大关系,而且信息是每日都是更新的。如果你推荐购物这种,因为一个新建的用户可能购买的商品不足全量商品万分之1,商品数据量大,人对商品购买少,很难找到相似的人;随着用户和物品数量的增加,计算复杂度增加,所以需要这种更适合第二种算法。

(英文itemCF)

  1. 基于物品的协同过滤算法(这种方法通过分析物品之间的相似性,推荐与用户之前喜欢的物品相似的其他物品)。当然也有缺点:需要足够的用户-物品交互数据来找出物品之间的相似性。

当然你除此之外,还有基于模型的协同过滤方法。这就属于更高级的推荐了,他一般是多因素,也是现代化推荐系统的主力。

  • 利用机器学习算法(如矩阵分解、深度学习等)来预测用户对物品的评分或偏好。
  • 优点:能够处理大规模数据集,提高推荐质量。
  • 缺点:模型训练可能需要大量计算资源。

上一章讲 协同过滤算法详解(一)过了下杰卡德相似度 和 余弦相似度,如果跳不进去,直接在我的博客搜索

推荐系统算法 协同过滤算法详解(一)杰卡德相似度和余弦相似度使用、缺陷-CSDN博客

这两者都是衡量相似度的方法,但它们通常不直接被称为协同过滤算法。不过,它们可以用于协同过滤算法中计算用户或物品之间的相似度。下面讲重点了。

皮尔森(pearson)相关系数

        余弦相似度的优化版本就是皮尔森相关系数(通过使用用户平均分对独立评分进行修正,减少了用户评分偏移设置的影响),两个相似度比较其实就是两条线,这两个都是通过计算三角的度数来判断相似度。当然还有个欧氏距离,这个是两边之间的距离的如果距离越长则相似度越低。

        欧氏距离适合做活跃度那这种,因为此时,你不是去看两条线比例和夹角,两个线还是要看红线距离

算法介绍

皮尔森(pearson)相关系数是一个结果介于-1(相反行为)和1之间的数值,绝对值越大表明相关性越强。

相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关

0到-1 负相关

但是有一个明显的缺陷就是,它只对线性关系敏感。如果关系是非线性的,哪怕两个变量之间是一一对应的关系,皮尔森相关系数也可能接近0。

事实上,皮尔森相关系数有几种不同的计算公式,它们在数学上是等价的,但形式上略有不同。这可能导致在不同情境下使用不同的公式。

这次主要说下面常用的两种,

        两个公式在数学上是等价的,它们都衡量的是两个变量之间的线性关联程度。选择哪个公式取决于具体的计算需求和可用数据。例如,在使用计算机或统计软件时,第一个公式可能更常用,因为计算均值是很直接的。而在手动计算或当有全部数据且数据量不大时,第二个公式可能更方便。

 算法示例1:

        以下图表为例进行两个推荐,下图是个商品购买评分表,user_id是用户编号,good_id是商品编号,score是评分(范围是1-5分)

1002和1003的皮尔森系数

求:x为user_id是1003用户,y是user_id是1002用户,求二者皮尔森系数。

分子部分:

解:

 xy相同购买过商品id是1、2、9、10,列出1、2、9、10商品分数

        x={5,4,5,4}

        y={4,3,2,2}

x相加总分是18,则平均分是4.5,y的商品id是1、2、9、10相加是11,平均分是2.75。

=(5-4.5)(4-2.75)+(4-4.5)(3-2.75)+(5-4.5)(2-2.75)+(4-4.5)(2-2.75)

=0.5*1.25 -0.5*0.25-0.5*0.75+0.5*0.75

=0.625-0.125-0.375+0.375

=0.5

分母部分:

解:

结果:

        0.5/1.66 =0.301

        上述也会算出1001和1003的皮尔森系数是1,那么相对于0.3如果要推荐就推荐1001,1001内1003没有的商品就是要推荐的商品。

算法示例2

我们有两个变量 X 和 Y,每个变量有 5 个观察值:

X = {1, 2, 3, 4, 5}

Y = {2, 4, 5, 4, 5}

其中,n 是观察值的数量,x 和 y 是观察值,而 Σ 表示求和。

让我们一步一步计算:

  • Σx = 1 + 2 + 3 + 4 + 5 = 15
  • Σy = 2 + 4 + 5 + 4 + 5 = 20
  • Σxy = 1×2 + 2×4 + 3×5 + 4×4 + 5×5 = 2 + 8 + 15 + 16 + 25 = 66
  • Σx² = 1² + 2² + 3² + 4² + 5² = 1 + 4 + 9 + 16 + 25 = 55
  • Σy² = 2² + 4² + 5² + 4² + 5² = 4 + 16 + 25 + 16 + 25 = 86
  • n = 5

所以,这两组数据的皮尔森相关系数大约是 0.7746,表明它们之间存在较强的正相关关系。

------------------------------------------与正文内容无关------------------------------------
如果觉的文章写对各位读者老爷们有帮助的话,麻烦点赞加关注呗!作者在这拜谢了!

混口饭吃了!如果你需要Java 、Python毕设、商务合作、技术交流、就业指导、技术支持度过试用期。请在关注私信我,本人看到一定马上回复!

这篇关于推荐系统算法 协同过滤算法详解(二)皮尔森相关系数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640644

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (