运用ETLCloud快速实现数据清洗、转换

2024-01-24 17:36

本文主要是介绍运用ETLCloud快速实现数据清洗、转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、数据清洗和转换的重要性及传统方式的痛点

1.数据清洗的重要性

数据清洗、转换作为数据ETL流程中的转换步骤,是指在数据收集、处理、存储和使用的整个过程中,对数据进行检查、处理和修复的过程,是数据分析中必不可少的环节,对于保证数据的质量和可用性具有重要的意义。

2.传统方式存在的痛点

传统的数据清洗、转换方式存在以下痛点:

  • 耗时长:往往需要人工操作,耗时长且容易出错。

  • 效率低:效率低下,难以应对大量数据的清洗、转换需求。

  • 容易出错:容易出现数据丢失、重复、错误等问题,影响数据质量,数据安全可能缺乏保障。

  • 扩展性差:缺乏灵活性和扩展性,无法满足大规模数据处理的需求。

二、ETLCloud介绍

ETLCloud数据集成工具,通过自动化数据转换和集成来实现企业内部和外部数据的无缝对接,从而帮助企业快速获取准确的数据信息,进而作出正确的业务决策。具有以下优势:

  • 简便易用:提供直观的用户界面和操作流程,内置大量数据清洗、转换组件,可以快速、高效地实现数据清洗、转换,灵活应用于不同的数据清洗、转换场景,大大提高了工作效率。

  • 数据质量可靠:提供丰富的数据清洗和校验功能,可以对数据进行规则验证、重复记录删除、缺失值填充等处理,确保数据的准确性和完整性。

  • 扩展性强:支持数据处理组件、规则自定义开发,有良好的扩展性。

三、ETLCloud实操

假设我们现在有个业务场景,需要将商品购买表和用户信息表数据进行过滤清洗,根据唯一id进行整合,映射后输出为Excel文件。以下是使用ETLCloud工具实现以上业务场景的步骤:

首先展示下两张数据源测试表,商品购买表以及用户信息表(数据皆随机生成):

流程设计如下:

流程设计的大概思路,两个库表输入组件,分别选取两张数据库表;商品购买表中过滤出已经支付的订单,用户信息表中清洗转换用户姓名数据,将处理后的数据整合成到一起,字段值映射性别、支付状态信息后输出为Excel表格。

数据过滤器T00003节点,过滤出商品购买表中goods_is_pay字段值为1的数据

数据清洗转换T00004节点,将用户表中name字段的值进行脱敏处理

双流join合并T00005节点,根据商品购买表的goods_buy字段和用户表的id字段,将数据进行合并

预览合并后的效果

字段值映射T00007节点,将sex与goods_is_pay字段值分别进行映射,映射成中文方便查看

Excel输出T00006节点,配置输出输出信息

流程配置完毕,运行流程,等流程结束后查看输出的Excel文件。

最后一步,同理也可以将数据入库。

四、总结

可以看到,利用ETLCloud,用户可以摆脱传统方式繁琐的数据清洗转换步骤,并提高数据处理效率和准确性。整体的流程设计特点使得数据处理流程更加可控和可管理,减少了人工干预带来的负面影响。

这篇关于运用ETLCloud快速实现数据清洗、转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640439

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买